|
|
Publications in Math-Net.Ru
-
General scheme for a class of Diffie — Hellman type protocols
Prikl. Diskr. Mat., 2025, no. 69, 94–110
-
A construction of Diffie — Hellman protocol with noncommutative operations
Prikl. Diskr. Mat. Suppl., 2025, no. 18, 178–182
-
Paramedial strong dependance $n$-ary operations
Diskr. Mat., 36:3 (2024), 115–126
-
Medial and paramedial general identities for strong dependance operations
Prikl. Diskr. Mat., 2024, no. 65, 21–40
-
Medial and paramedial alebras with strong dependable operations
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 19–23
-
A functional identity of generalized transitivity for strongly dependent $n$-ary operations
Diskr. Mat., 35:4 (2023), 146–156
-
ID-based public key cryptographic systems
Prikl. Diskr. Mat., 2023, no. 61, 44–85
-
On the linear disjunctive decomposition of a $p$-logic function into a sum of functions
Diskr. Mat., 34:4 (2022), 99–107
-
A randomized analog of Chaum — van Antwerpen undeniable signature
Prikl. Diskr. Mat., 2022, no. 57, 40–51
-
On the linear disjunctive decomposition of a $p$-logic function into a product of functions
Diskr. Mat., 33:4 (2021), 153–171
-
A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 55–57
-
A letter to the Editor
Diskr. Mat., 32:3 (2020), 147
-
Medial strong dependance $n$-ary operations
Diskr. Mat., 32:2 (2020), 112–121
-
Selfish mining strategy elaboration
Prikl. Diskr. Mat., 2020, no. 49, 57–77
-
Elaboration of selfish-mine strategy
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 71–77
-
Partially invertible strongly dependent $n$-ary operations
Mat. Sb., 211:2 (2020), 141–158
-
Medial strongly dependent $n$-ary operations
Diskr. Mat., 31:2 (2019), 152–157
-
Properties of strong dependance $n$-ary semigroups
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 36–41
-
Analogues of Gluskin–Hosszú and Malyshev theorems for strongly dependent $n$-ary operations
Diskr. Mat., 30:2 (2018), 138–147
-
Linear decomposition of Boolean functions into a sum or a product of components
Prikl. Diskr. Mat., 2018, no. 40, 10–22
-
An extension of Gluskin–Hoszu's and Malyshev's theorems to strong dependent $n$-ary operations
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 23–25
-
Estimating the level of affinity of a quadratic form
Diskr. Mat., 29:1 (2017), 114–125
-
On the rank of random quadratic form over finite field
Prikl. Diskr. Mat., 2017, no. 35, 29–37
-
A condition for uniqueness of linear decomposition of a Boolean function into disjunctive sum of indecomposable functions
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 55–56
-
On linear decomposition of Boolean functions
Prikl. Diskr. Mat., 2016, no. 1(31), 46–56
-
On quadratic form rank distribution and asymptotic bounds of affinity level
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 36–38
-
Enumeration of Boolean functions with a fixed number of affine products
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 43–47
-
Computation of nonlinearity degree for discrete functions on primary cyclic groups
Prikl. Diskr. Mat., 2014, no. 2(24), 37–47
-
Number of discrete functions on a primary cyclic group with a given nonlinearity degree
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 31–32
-
An additive approach to nonlinearity degree of discrete functions on a primary cyclic group
Prikl. Diskr. Mat., 2013, no. 2(20), 26–38
-
On a nonlinearity degree definition for a discrete function on a cyclic group
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 26–27
-
On the notion of electronic signature
Prikl. Diskr. Mat., 2012, no. 3(17), 53–69
-
An additive approach to nonlinear degree of discrete function
Prikl. Diskr. Mat., 2010, no. 2(8), 22–33
-
Cryptographic protocols
Prikl. Diskr. Mat., 2009, no. supplement № 2, 115–150
-
Protocol verification tools
Prikl. Diskr. Mat., 2009, no. supplement № 1, 34–36
-
A recursive algorithm for cover-free family construction
Prikl. Diskr. Mat., 2009, no. 4(6), 51–55
-
Almost all Latin squares have trivial autoparatopy group
Prikl. Diskr. Mat., 2009, no. 3(5), 29–32
-
Combinatorial-geometric technique to design a key distribution patterns (an overview)
Prikl. Diskr. Mat., 2008, no. 1(1), 55–63
-
Repetition-free decomposition of strongly dependent functions
Diskr. Mat., 16:3 (2004), 3–42
-
Methods of affine and linear classification of binary functions
Tr. Diskr. Mat., 4 (2001), 273–314
© , 2026