RUS  ENG
Full version
PEOPLE

Cheremushkin Aleksandr Vasil'evich

Publications in Math-Net.Ru

  1. General scheme for a class of Diffie — Hellman type protocols

    Prikl. Diskr. Mat., 2025, no. 69,  94–110
  2. A construction of Diffie — Hellman protocol with noncommutative operations

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  178–182
  3. Paramedial strong dependance $n$-ary operations

    Diskr. Mat., 36:3 (2024),  115–126
  4. Medial and paramedial general identities for strong dependance operations

    Prikl. Diskr. Mat., 2024, no. 65,  21–40
  5. Medial and paramedial alebras with strong dependable operations

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  19–23
  6. A functional identity of generalized transitivity for strongly dependent $n$-ary operations

    Diskr. Mat., 35:4 (2023),  146–156
  7. ID-based public key cryptographic systems

    Prikl. Diskr. Mat., 2023, no. 61,  44–85
  8. On the linear disjunctive decomposition of a $p$-logic function into a sum of functions

    Diskr. Mat., 34:4 (2022),  99–107
  9. A randomized analog of Chaum — van Antwerpen undeniable signature

    Prikl. Diskr. Mat., 2022, no. 57,  40–51
  10. On the linear disjunctive decomposition of a $p$-logic function into a product of functions

    Diskr. Mat., 33:4 (2021),  153–171
  11. A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  55–57
  12. A letter to the Editor

    Diskr. Mat., 32:3 (2020),  147
  13. Medial strong dependance $n$-ary operations

    Diskr. Mat., 32:2 (2020),  112–121
  14. Selfish mining strategy elaboration

    Prikl. Diskr. Mat., 2020, no. 49,  57–77
  15. Elaboration of selfish-mine strategy

    Prikl. Diskr. Mat. Suppl., 2020, no. 13,  71–77
  16. Partially invertible strongly dependent $n$-ary operations

    Mat. Sb., 211:2 (2020),  141–158
  17. Medial strongly dependent $n$-ary operations

    Diskr. Mat., 31:2 (2019),  152–157
  18. Properties of strong dependance $n$-ary semigroups

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  36–41
  19. Analogues of Gluskin–Hosszú and Malyshev theorems for strongly dependent $n$-ary operations

    Diskr. Mat., 30:2 (2018),  138–147
  20. Linear decomposition of Boolean functions into a sum or a product of components

    Prikl. Diskr. Mat., 2018, no. 40,  10–22
  21. An extension of Gluskin–Hoszu's and Malyshev's theorems to strong dependent $n$-ary operations

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  23–25
  22. Estimating the level of affinity of a quadratic form

    Diskr. Mat., 29:1 (2017),  114–125
  23. On the rank of random quadratic form over finite field

    Prikl. Diskr. Mat., 2017, no. 35,  29–37
  24. A condition for uniqueness of linear decomposition of a Boolean function into disjunctive sum of indecomposable functions

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  55–56
  25. On linear decomposition of Boolean functions

    Prikl. Diskr. Mat., 2016, no. 1(31),  46–56
  26. On quadratic form rank distribution and asymptotic bounds of affinity level

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  36–38
  27. Enumeration of Boolean functions with a fixed number of affine products

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  43–47
  28. Computation of nonlinearity degree for discrete functions on primary cyclic groups

    Prikl. Diskr. Mat., 2014, no. 2(24),  37–47
  29. Number of discrete functions on a primary cyclic group with a given nonlinearity degree

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  31–32
  30. An additive approach to nonlinearity degree of discrete functions on a primary cyclic group

    Prikl. Diskr. Mat., 2013, no. 2(20),  26–38
  31. On a nonlinearity degree definition for a discrete function on a cyclic group

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  26–27
  32. On the notion of electronic signature

    Prikl. Diskr. Mat., 2012, no. 3(17),  53–69
  33. An additive approach to nonlinear degree of discrete function

    Prikl. Diskr. Mat., 2010, no. 2(8),  22–33
  34. Cryptographic protocols

    Prikl. Diskr. Mat., 2009, no. supplement № 2,  115–150
  35. Protocol verification tools

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  34–36
  36. A recursive algorithm for cover-free family construction

    Prikl. Diskr. Mat., 2009, no. 4(6),  51–55
  37. Almost all Latin squares have trivial autoparatopy group

    Prikl. Diskr. Mat., 2009, no. 3(5),  29–32
  38. Combinatorial-geometric technique to design a key distribution patterns (an overview)

    Prikl. Diskr. Mat., 2008, no. 1(1),  55–63
  39. Repetition-free decomposition of strongly dependent functions

    Diskr. Mat., 16:3 (2004),  3–42
  40. Methods of affine and linear classification of binary functions

    Tr. Diskr. Mat., 4 (2001),  273–314


© Steklov Math. Inst. of RAS, 2026