|
|
Publications in Math-Net.Ru
-
Criterion of completeness and submaximal ultraclones for linear hyperfunctions of rank 2
Bulletin of Irkutsk State University. Series Mathematics, 46 (2023), 121–129
-
On submaximal ultraclones of self-dual hyperfunctions of rank $2$
Sib. Èlektron. Mat. Izv., 20:2 (2023), 1374–1380
-
On positive completeness and positively closed sets of multifunctions of rank $2$
Sib. Èlektron. Mat. Izv., 20:2 (2023), 1313–1319
-
On two intervals in the lattice of partial ultraclones of rank $2$
Sib. Èlektron. Mat. Izv., 20:1 (2023), 262–274
-
On read-once Boolean functions in elementary base extended by median
Sib. Èlektron. Mat. Izv., 19:1 (2022), 378–386
-
On some intervals in the lattice of ultraclones of rank $2$
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1210–1218
-
On read-once multifunctions in some base
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1098–1104
-
On minimal bases in full partial ultraclone of rank $2$
Sib. Èlektron. Mat. Izv., 17 (2020), 1478–1487
-
On the classes of partial functions generated by maximal partial ultraclones
Sib. Èlektron. Mat. Izv., 17 (2020), 32–46
-
Repetition-free functions of the algebra of logic in pre-elementary
bases
Algebra Logika, 58:2 (2019), 271–284
-
On completeness of multifunction set of rank 2
J. Sib. Fed. Univ. Math. Phys., 11:4 (2018), 465–471
-
On some sufficient condition for the equality of multi-clone and super-clone
J. Sib. Fed. Univ. Math. Phys., 11:1 (2018), 97–102
-
On maximal clones of partial ultrafunctions on a two-element set
Bulletin of Irkutsk State University. Series Mathematics, 16 (2016), 3–18
-
On some series of bases for the set of Boolean functions
Bulletin of Irkutsk State University. Series Mathematics, 15 (2016), 92–107
-
Minimal algebras of unary multioperations
J. Sib. Fed. Univ. Math. Phys., 9:2 (2016), 220–224
-
On decomposition of sub-definite partial Boolean functions
J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 119–122
-
Galois theory for clones and superclones
Diskr. Mat., 27:4 (2015), 79–93
-
Minimal Partial Ultraclones on a Two-Element Set
Bulletin of Irkutsk State University. Series Mathematics, 9 (2014), 3–9
-
On repetition-free Boolean functions over pre-elementary monotone bases
Diskr. Mat., 21:2 (2009), 88–93
-
Realization of Boolean functions by repetition-free formulas in a particular base
Sibirsk. Mat. Zh., 50:1 (2009), 231–237
-
Criteria for Boolean functions to be repetition-free in pre-elementary bases of rank 3
Diskr. Mat., 17:2 (2005), 127–138
-
On Boolean bases of the second level
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3, 81–82
-
On weakly repetitive Boolean functions in a pre-elementary basis
Diskretn. Anal. Issled. Oper., Ser. 1, 10:2 (2003), 79–101
© , 2026