|
|
Publications in Math-Net.Ru
-
A class of discrete functions constructed from several linear recurrence sequences over primal residue rings
Diskr. Mat., 37:1 (2025), 9–21
-
An improved upper bound for the number of plateaued binary mappings
Prikl. Diskr. Mat. Suppl., 2025, no. 18, 38–42
-
Algorithm for quickly generating a key sequence using a quantum communication channel
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 93–98
-
On a class of algebraic geometric codes
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 132–134
-
Some classes of resilient functions over Galois rings and their linear characteristics
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 18–22
-
Some conditions for the applicability of the integral cryptanalysis to $4$-rounds of AES-like ciphers
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 57–62
-
Some classes of balanced functions over finite fields with a small value of the linear characteristic
Probl. Peredachi Inf., 58:4 (2022), 103–117
-
Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 48–51
-
Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 62–66
-
Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions
Diskr. Mat., 30:2 (2018), 73–98
-
Improved asymptotic estimates for the number of correlation-immune Boolean functions and mappings
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 49–52
-
Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 46–49
-
Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties
Mat. Vopr. Kriptogr., 5:4 (2014), 73–97
-
Local limit theorem for the distribution of incomplete vector formed by the weights of subfunctions of random binary mapping components
Mat. Vopr. Kriptogr., 5:3 (2014), 49–80
-
Speeds of convergence in limit theorems for joint distributions of some random binary mappings characteristics
Prikl. Diskr. Mat., 2012, no. 4(18), 14–30
-
An upper bound for the number of functions satisfying the strict avalanche criterion
Diskr. Mat., 17:2 (2005), 95–101
© , 2026