RUS  ENG
Full version
PEOPLE

Pankov Konstantin Nikolaevich

Publications in Math-Net.Ru

  1. A class of discrete functions constructed from several linear recurrence sequences over primal residue rings

    Diskr. Mat., 37:1 (2025),  9–21
  2. An improved upper bound for the number of plateaued binary mappings

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  38–42
  3. Algorithm for quickly generating a key sequence using a quantum communication channel

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  93–98
  4. On a class of algebraic geometric codes

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  132–134
  5. Some classes of resilient functions over Galois rings and their linear characteristics

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  18–22
  6. Some conditions for the applicability of the integral cryptanalysis to $4$-rounds of AES-like ciphers

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  57–62
  7. Some classes of balanced functions over finite fields with a small value of the linear characteristic

    Probl. Peredachi Inf., 58:4 (2022),  103–117
  8. Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  48–51
  9. Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  62–66
  10. Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions

    Diskr. Mat., 30:2 (2018),  73–98
  11. Improved asymptotic estimates for the number of correlation-immune Boolean functions and mappings

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  49–52
  12. Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  46–49
  13. Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties

    Mat. Vopr. Kriptogr., 5:4 (2014),  73–97
  14. Local limit theorem for the distribution of incomplete vector formed by the weights of subfunctions of random binary mapping components

    Mat. Vopr. Kriptogr., 5:3 (2014),  49–80
  15. Speeds of convergence in limit theorems for joint distributions of some random binary mappings characteristics

    Prikl. Diskr. Mat., 2012, no. 4(18),  14–30
  16. An upper bound for the number of functions satisfying the strict avalanche criterion

    Diskr. Mat., 17:2 (2005),  95–101


© Steklov Math. Inst. of RAS, 2026