RUS  ENG
Full version
PEOPLE

Sholomov Lev Abramovich

Publications in Math-Net.Ru

  1. Theoretically effective asymptotically optimal universal coding of partially defined sources

    Prikl. Diskr. Mat., 2020, no. 47,  30–56
  2. Polynomial asymptotically optimal coding of underdetermined Bernoulli sources of the general form

    Probl. Peredachi Inf., 56:4 (2020),  81–96
  3. Minimal representative set for a system of frequency classes of underdetermined words

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  41–44
  4. On an invariant for the problem of underdetermined data decomposing

    Prikl. Diskr. Mat., 2018, no. 39,  13–32
  5. On the concept of underdetermined alphabets of equal strength

    Prikl. Diskr. Mat., 2014, no. 3(25),  40–57
  6. On a comparison of underdetermined alphabets

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  34–36
  7. Binary representations of underdetermined data and superimposed codes

    Prikl. Diskr. Mat., 2013, no. 1(19),  17–33
  8. An economical representation of underdetermined data and superimposed codes

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  27–29
  9. Decomposition of underdetermined data

    Diskretn. Anal. Issled. Oper., 19:6 (2012),  72–98
  10. Decomposition and approximation of underdetermined data

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  34–36
  11. A rule for the addition of entropies for underdetermined data

    Diskretn. Anal. Issled. Oper., 17:5 (2010),  67–90
  12. Elements of underdetermined information theory

    Prikl. Diskr. Mat., 2009, no. supplement № 2,  18–42
  13. The explicit form of information characteristic for partially defined data

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  15–16
  14. Logical methods for design and analysis of choice models

    Prikl. Diskr. Mat., 2009, no. 1(3),  38–71
  15. Entropy of underdetermined sequences under constraints to specifications

    Prikl. Diskr. Mat., 2008, no. 1(1),  29–33
  16. On the complexity of the sequential realization of partial Boolean functions by schemes

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:1 (2007),  110–139
  17. Transformation of fuzzy data with preservation of the information properties

    Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  85–104
  18. Logical methods for studying relations in criterial spaces with arbitrary ordinal scales

    Avtomat. i Telemekh., 2004, no. 5,  115–125
  19. Recognition of the properties of order relations in discrete spaces

    Diskretn. Anal. Issled. Oper., Ser. 1, 11:3 (2004),  88–110
  20. Complexity of the recognition of the properties of order relations in $n$-dimensional spaces

    Diskretn. Anal. Issled. Oper., Ser. 1, 9:4 (2002),  82–105
  21. Relations Decomposition in Choice Problems: Completely Separable Relations and Path Independence

    Avtomat. i Telemekh., 2001, no. 11,  154–164
  22. Separating decomposition of relations in multicriterial choice problems

    Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001),  63–89
  23. Analysis of the rationality of the sequential choice model

    Avtomat. i Telemekh., 2000, no. 5,  124–132
  24. On the complexity of problems of minimization and compression of models of sequential choice

    Diskretn. Anal. Issled. Oper., Ser. 1, 6:3 (1999),  87–109
  25. Aggregation of linear orders in problems of group choice

    Avtomat. i Telemekh., 1998, no. 2,  113–122
  26. Transitivity-preserving operators on relations

    Diskr. Mat., 10:1 (1998),  28–45
  27. Logical methods for the representation and investigation of ordered choice models

    Avtomat. i Telemekh., 1994, no. 5,  100–108
  28. Synthesis of transitive order relations that are consistent with information on the strength of criteria

    Sibirsk. Zh. Issled. Oper., 1:4 (1994),  64–92
  29. Order relations and Arrow operators

    Avtomat. i Telemekh., 1991, no. 6,  115–126
  30. Design of multistep choice schemes

    Avtomat. i Telemekh., 1986, no. 10,  115–126
  31. Multistep schemes of generalized mathematical programming and the choice function

    Dokl. Akad. Nauk SSSR, 282:5 (1985),  1066–1069
  32. A sequence of complexly computable functions

    Mat. Zametki, 17:6 (1975),  957–966
  33. Information complexity of problems associated with minimal realization of Boolean functions by networks

    Dokl. Akad. Nauk SSSR, 200:3 (1971),  556–559


© Steklov Math. Inst. of RAS, 2026