RUS  ENG
Full version
PEOPLE

Il'ev Viktor Petrovich

Publications in Math-Net.Ru

  1. Approximation algorithms for graph clustering problems with clusters of bounded size

    Diskretn. Anal. Issled. Oper., 31:4 (2024),  40–57
  2. On the complexity of graph clustering in the problem with bounded cluster sizes

    Prikl. Diskr. Mat., 2023, no. 60,  76–84
  3. Algorithms for solving systems of equations over various classes of finite graphs

    Prikl. Diskr. Mat., 2021, no. 53,  89–102
  4. $2$-Approximation algorithms for two graph clustering problems

    Diskretn. Anal. Issled. Oper., 27:3 (2020),  88–108
  5. On axiomatizability of the class of finitary matroids and decidability of their universal theory

    Sib. Èlektron. Mat. Izv., 17 (2020),  1730–1740
  6. Approximate algorithms for graph clustering problem

    Prikl. Diskr. Mat., 2019, no. 45,  64–77
  7. On a semi-superwized graph clustering problem

    Prikl. Diskr. Mat., 2018, no. 42,  66–75
  8. Graph clustering with a constraint on cluster sizes

    Diskretn. Anal. Issled. Oper., 23:3 (2016),  5–20
  9. A characterization of matroids in terms of surfaces

    Prikl. Diskr. Mat., 2016, no. 3(33),  5–15
  10. Approximate solution of the $p$-median minimization problem

    Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016),  1614–1621
  11. On the problem of maximizing a modular function in the geometric lattice

    Bulletin of Irkutsk State University. Series Mathematics, 6:1 (2013),  2–13
  12. Approximation algorithms for graph approximation problems

    Diskretn. Anal. Issled. Oper., 18:1 (2011),  41–60
  13. Minimizing modular and supermodular functions on $L$-matroids

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  42–53
  14. Computational complexity of the problem of approximation by graphs with connected components of bounded size

    Prikl. Diskr. Mat., 2011, no. 3(13),  80–84
  15. Approximation algorithms for approximating graphs with bounded numberof connected components

    Tr. Inst. Mat., 18:1 (2010),  47–52
  16. Problems on independence systems solvable by the greedy algorithm

    Diskr. Mat., 21:4 (2009),  85–94
  17. Оценки погрешности жадных алгоритмов для задач на наследственных системах

    Diskretn. Anal. Issled. Oper., 15:1 (2008),  44–57
  18. Computational complexity of the graph approximation problem

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  3–15
  19. Two problems on hereditary systems

    Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003),  54–66
  20. An estimate for the accuracy of the greedy descent algorithm for the problem of minimizing a supermodular function

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:4 (1998),  45–60
  21. An error estimate for a gradient algorithm for independence systems

    Diskretn. Anal. Issled. Oper., 3:1 (1996),  9–22
  22. On the problem of approximation by graphs with a fixed number of components

    Dokl. Akad. Nauk SSSR, 264:3 (1982),  533–538


© Steklov Math. Inst. of RAS, 2026