RUS  ENG
Full version
PEOPLE

Ageev Aleksandr Aleksandrovich

Publications in Math-Net.Ru

  1. Capacitated Facility Location Problem on tree-like graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  24–44
  2. Complexity of the Euclidean max cut problem

    Diskretn. Anal. Issled. Oper., 21:4 (2014),  3–11
  3. Polynomial algorithm for the path facility location problem with uniform capacities

    Diskretn. Anal. Issled. Oper., 16:5 (2009),  3–18
  4. A 2-approximation algorithm for the metric 2-peripatetic salesman problem

    Diskretn. Anal. Issled. Oper., 16:4 (2009),  3–20
  5. Алгоритм с оценками для пропорционального случая двухпроцессорной задачи теории расписаний типа flow shop c минимальными задержками

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:4 (2007),  3–15
  6. Метрические задачи размещения c не кратчайшими маршрутами обслуживания

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  3–12
  7. A polynomial algorithm with an accuracy estimate of 3/4 for finding two nonintersecting Hamiltonian cycles of maximum weight

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:2 (2006),  11–20
  8. Computational complexity of the graph approximation problem

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  3–15
  9. Algorithms with improved estimates for accuracy for the set covering problem

    Diskretn. Anal. Issled. Oper., Ser. 2, 11:1 (2004),  3–10
  10. Complexity of the determination of the maximum weighted joining in a graph

    Diskretn. Anal. Issled. Oper., Ser. 1, 4:3 (1997),  3–8
  11. Complexity of the network problem of a median on planar lattices

    Trudy Inst. Mat. SO RAN, 27 (1994),  6–13
  12. Dominating sets and hamiltonicity in $K_{1,3}$-free graphs

    Sibirsk. Mat. Zh., 35:3 (1994),  475–479
  13. A polynomial algorithm for solving the location problem on a series-parallel network

    Upravliaemie systemy, 1990, no. 30,  3–16
  14. Graphs, matrices and an elementary location problem

    Upravliaemie systemy, 1989, no. 29,  3–10
  15. A transformation of the problem of maximizing a concave separable function on a polymatroid intersection

    Upravliaemie systemy, 1988, no. 28,  3–7
  16. Algorithms for the minimization of certain classes of polynomials of Boolean variables

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 10 (1988),  5–17
  17. Approximate algorithms for the minimization of polynomials in Boolean variables

    Upravliaemie systemy, 1985, no. 26,  3–19
  18. Minimization of quadratic polynomials of Boolean variables

    Upravliaemie systemy, 1984, no. 25,  3–16
  19. Complexity of problems of minimization of polynomials in Boolean variables

    Upravliaemie systemy, 1983, no. 23,  3–11
  20. Minimization of some polynomials from Boolean variables

    Upravliaemie systemy, 1981, no. 21,  3–5


© Steklov Math. Inst. of RAS, 2026