RUS  ENG
Full version
PEOPLE

Tarannikov Yuriy Valerievich

Publications in Math-Net.Ru

  1. On the number of partitions of the hypercube ${\mathbf Z}_q^n$ into large subcubes

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1503–1521
  2. Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  5–8
  3. On the existence of Agievich-primitive partitions

    Diskretn. Anal. Issled. Oper., 29:4 (2022),  104–123
  4. The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3,  21–25
  5. On plateaued Boolean functions with the same spectrum support

    Sib. Èlektron. Mat. Izv., 13 (2016),  1346–1368
  6. On packings of $(n,k)$-products

    Sib. Èlektron. Mat. Izv., 13 (2016),  888–896
  7. On ranks of subsets in the space of binary vectors admitting an embedding of a Steiner system $S(2,4,v)$

    Prikl. Diskr. Mat., 2014, no. 1(23),  73–76
  8. Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters

    Sib. Èlektron. Mat. Izv., 11 (2014),  229–245
  9. On values of the affine rank of the support of spectrum of a plateaued function

    Diskr. Mat., 18:3 (2006),  120–137
  10. On the class of Boolean functions uniformly distributed over balls with degree $1$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5,  17–21
  11. On some estimates for the weight of $l$-balanced Boolean functions

    Diskretn. Anal. Issled. Oper., 2:4 (1995),  80–96
  12. On the number of ordered pairs of $l$-balanced sets of length $n$

    Diskr. Mat., 7:3 (1995),  146–156
  13. On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3,  91–93
  14. The class of $1$-balanced functions and the complexity of its realization

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 2,  83–85

  15. The Chair of Discrete Mathematics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 6,  38–49


© Steklov Math. Inst. of RAS, 2026