|
|
Publications in Math-Net.Ru
-
On the number of partitions of the hypercube ${\mathbf Z}_q^n$ into large subcubes
Sib. Èlektron. Mat. Izv., 21:2 (2024), 1503–1521
-
Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 5–8
-
On the existence of Agievich-primitive partitions
Diskretn. Anal. Issled. Oper., 29:4 (2022), 104–123
-
The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3, 21–25
-
On plateaued Boolean functions with the same spectrum support
Sib. Èlektron. Mat. Izv., 13 (2016), 1346–1368
-
On packings of $(n,k)$-products
Sib. Èlektron. Mat. Izv., 13 (2016), 888–896
-
On ranks of subsets in the space of binary vectors admitting an embedding of a Steiner system $S(2,4,v)$
Prikl. Diskr. Mat., 2014, no. 1(23), 73–76
-
Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters
Sib. Èlektron. Mat. Izv., 11 (2014), 229–245
-
On values of the affine rank of the support of spectrum of a plateaued function
Diskr. Mat., 18:3 (2006), 120–137
-
On the class of Boolean functions uniformly distributed over balls with degree $1$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5, 17–21
-
On some estimates for the weight of $l$-balanced Boolean functions
Diskretn. Anal. Issled. Oper., 2:4 (1995), 80–96
-
On the number of ordered pairs of $l$-balanced sets of length $n$
Diskr. Mat., 7:3 (1995), 146–156
-
On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3, 91–93
-
The class of $1$-balanced functions and the complexity of its realization
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 2, 83–85
-
The Chair of Discrete Mathematics
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 6, 38–49
© , 2026