RUS  ENG
Full version
PEOPLE

Plekhanova Marina Vasil'evna

Publications in Math-Net.Ru

  1. Nonlinear inverse problems with a stationary unknown element for equations with Dzhrbashyan–Nersesyan derivatives

    Mathematical notes of NEFU, 31:3 (2024),  55–74
  2. Nonlinear inverse problems for some equations with fractional derivatives

    Chelyab. Fiz.-Mat. Zh., 8:2 (2023),  190–202
  3. Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023),  80–88
  4. Mixed control for degenerate nonlinear equations with fractional derivatives

    Chelyab. Fiz.-Mat. Zh., 7:3 (2022),  287–300
  5. On the well-posedness of an inverse problem for a degenerate evolutionary equation with the Dzhrbashyan–Nersesyan fractional derivative

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022),  80–88
  6. Mixed control for semilinear fractional equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022),  64–72
  7. An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives

    Bulletin of Irkutsk State University. Series Mathematics, 35 (2021),  34–48
  8. Distributed control for semilinear equations with Gerasimov–Caputo derivatives

    Mathematical notes of NEFU, 28:2 (2021),  47–67
  9. Mixed control for linear infinite-dimensional systems of fractional order

    Chelyab. Fiz.-Mat. Zh., 5:1 (2020),  32–43
  10. Strong solution and optimal control problems for a class of fractional linear equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  42–51
  11. Optimal control problems for a class of degenerate evolution equations with delay

    Chelyab. Fiz.-Mat. Zh., 3:3 (2018),  319–331
  12. Optimal Control Problems for Linear Degenerate Fractional Equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018),  72–83
  13. Degenerate linear evolution equations with the Riemann–Liouville fractional derivative

    Sibirsk. Mat. Zh., 59:1 (2018),  171–184
  14. Solvability of control problems for degenerate evolution equations of fractional order

    Chelyab. Fiz.-Mat. Zh., 2:1 (2017),  53–65
  15. Start control problems for fractional order evolution equations

    Chelyab. Fiz.-Mat. Zh., 1:3 (2016),  15–36
  16. Mixed control problems for Sobolev's system

    Chelyab. Fiz.-Mat. Zh., 1:2 (2016),  78–84
  17. Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations

    Chelyab. Fiz.-Mat. Zh., 1:2 (2016),  44–58
  18. Conditional gradient method for a robust control problem to a degenerate evolution system

    Chelyab. Fiz.-Mat. Zh., 1:1 (2016),  81–92
  19. Degenerate distributed control systems with fractional time derivative

    Ural Math. J., 2:2 (2016),  58–71
  20. Strong solutions of a nonlinear degenerate fractional order evolution equation

    Sib. J. Pure and Appl. Math., 16:3 (2016),  61–74
  21. Numerical solution of the linearized Oskolkov system

    Bulletin of Irkutsk State University. Series Mathematics, 12 (2015),  23–34
  22. Quasilinear equations that are not solved for the higher-order time derivative

    Sibirsk. Mat. Zh., 56:4 (2015),  909–921
  23. On control of degenerate distributed systems

    Ufimsk. Mat. Zh., 6:2 (2014),  78–98
  24. Start control for degenerate linear distributed systems

    Bulletin of Irkutsk State University. Series Mathematics, 6:4 (2013),  53–68
  25. Optimality systems for degenerate distributed control problems

    Vestnik Chelyabinsk. Gos. Univ., 2013, no. 16,  60–70
  26. Numerical solution of delayed linearized quasistationary phase-field system of equations

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013),  45–51
  27. Optimal control of semilinear Sobolev type systems in the problems excluding control costs

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  80–89
  28. On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative

    Izv. RAN. Ser. Mat., 75:2 (2011),  177–194
  29. Solvability of mixed-type optimal control problems for distributed systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7,  37–47
  30. The problem of start control for a class of semilinear distributed systems of Sobolev type

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  259–267
  31. A problem with mixed control for a class of linear Sobolev type equations

    Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12,  49–58
  32. Research of the linearized Boussinesq system of equations by methods of theory of degenerate operator semigroups

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  62–69
  33. Optimal control of Sobolev type linear equations

    Differ. Uravn., 40:11 (2004),  1548–1556
  34. Совокупность соотношений, характеризующих оптимальное управление для уравнений соболевского типа

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  108–118
  35. An Optimal Control Problem for the Oskolkov Equation

    Differ. Uravn., 38:7 (2002),  997–998

  36. Владимир Евгеньевич Федоров. К пятидесятилетию со дня рождения

    Chelyab. Fiz.-Mat. Zh., 7:1 (2022),  5–10


© Steklov Math. Inst. of RAS, 2026