|
|
Publications in Math-Net.Ru
-
Nonlinear inverse problems with a stationary unknown element for equations with Dzhrbashyan–Nersesyan derivatives
Mathematical notes of NEFU, 31:3 (2024), 55–74
-
Nonlinear inverse problems for some equations with fractional derivatives
Chelyab. Fiz.-Mat. Zh., 8:2 (2023), 190–202
-
Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023), 80–88
-
Mixed control for degenerate nonlinear equations with fractional derivatives
Chelyab. Fiz.-Mat. Zh., 7:3 (2022), 287–300
-
On the well-posedness of an inverse problem for a degenerate evolutionary equation with the Dzhrbashyan–Nersesyan fractional derivative
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022), 80–88
-
Mixed control for semilinear fractional equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022), 64–72
-
An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives
Bulletin of Irkutsk State University. Series Mathematics, 35 (2021), 34–48
-
Distributed control for semilinear equations with Gerasimov–Caputo derivatives
Mathematical notes of NEFU, 28:2 (2021), 47–67
-
Mixed control for linear infinite-dimensional systems of fractional order
Chelyab. Fiz.-Mat. Zh., 5:1 (2020), 32–43
-
Strong solution and optimal control problems for a class of fractional linear equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019), 42–51
-
Optimal control problems for a class of degenerate evolution equations with delay
Chelyab. Fiz.-Mat. Zh., 3:3 (2018), 319–331
-
Optimal Control Problems for Linear Degenerate Fractional Equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018), 72–83
-
Degenerate linear evolution equations with the Riemann–Liouville fractional derivative
Sibirsk. Mat. Zh., 59:1 (2018), 171–184
-
Solvability of control problems for degenerate evolution equations of fractional order
Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 53–65
-
Start control problems for fractional order evolution equations
Chelyab. Fiz.-Mat. Zh., 1:3 (2016), 15–36
-
Mixed control problems for Sobolev's system
Chelyab. Fiz.-Mat. Zh., 1:2 (2016), 78–84
-
Numerical study of a robust control problem for the linearized quasistationary system of the phase field equations
Chelyab. Fiz.-Mat. Zh., 1:2 (2016), 44–58
-
Conditional gradient method for a robust control problem to a degenerate evolution system
Chelyab. Fiz.-Mat. Zh., 1:1 (2016), 81–92
-
Degenerate distributed control systems with fractional time derivative
Ural Math. J., 2:2 (2016), 58–71
-
Strong solutions of a nonlinear degenerate fractional order evolution equation
Sib. J. Pure and Appl. Math., 16:3 (2016), 61–74
-
Numerical solution of the linearized Oskolkov system
Bulletin of Irkutsk State University. Series Mathematics, 12 (2015), 23–34
-
Quasilinear equations that are not solved for the higher-order time derivative
Sibirsk. Mat. Zh., 56:4 (2015), 909–921
-
On control of degenerate distributed systems
Ufimsk. Mat. Zh., 6:2 (2014), 78–98
-
Start control for degenerate linear distributed systems
Bulletin of Irkutsk State University. Series Mathematics, 6:4 (2013), 53–68
-
Optimality systems for degenerate distributed control problems
Vestnik Chelyabinsk. Gos. Univ., 2013, no. 16, 60–70
-
Numerical solution of delayed linearized quasistationary phase-field system of equations
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013), 45–51
-
Optimal control of semilinear Sobolev type systems in the problems excluding control costs
Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15, 80–89
-
On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative
Izv. RAN. Ser. Mat., 75:2 (2011), 177–194
-
Solvability of mixed-type optimal control problems for distributed systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7, 37–47
-
The problem of start control for a class of semilinear distributed systems of Sobolev type
Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011), 259–267
-
A problem with mixed control for a class of linear Sobolev type equations
Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12, 49–58
-
Research of the linearized Boussinesq system of equations by methods of theory of degenerate operator semigroups
Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11, 62–69
-
Optimal control of Sobolev type linear equations
Differ. Uravn., 40:11 (2004), 1548–1556
-
Совокупность соотношений, характеризующих оптимальное управление для уравнений соболевского типа
Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7, 108–118
-
An Optimal Control Problem for the Oskolkov Equation
Differ. Uravn., 38:7 (2002), 997–998
-
Владимир Евгеньевич Федоров. К пятидесятилетию со дня рождения
Chelyab. Fiz.-Mat. Zh., 7:1 (2022), 5–10
© , 2026