|
|
Publications in Math-Net.Ru
-
On the Stability of Simple Solution of Shallow Water Equations on a Rotating Gravitating Sphere
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013), 79–85
-
On the stability of the stationary solution to the shallow water equation on a rotating gravitating sphere
Sib. Zh. Ind. Mat., 14:4 (2011), 44–49
-
Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras
Sib. Èlektron. Mat. Izv., 6 (2009), 53–109
-
Invariant Solutions of Clebsch Equations
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 59–71
-
Equivalence transformations of the Clebsch equations
Sibirsk. Mat. Zh., 49:1 (2008), 153–160
-
Group properties of 2-submodels for the stationary class of gas-dynamic equations
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007), 72–84
-
Strong discontinuities in 2-submodels of class $E$ of gas dynamic equations
Sib. Zh. Ind. Mat., 7:3 (2004), 111–118
-
Nonsmooth solutions of 2-submodels of the class $E$ of equations of gas dynamics
Sib. Zh. Ind. Mat., 6:1 (2003), 72–76
-
Group properties of 2–submodels for the evolutionary class of gas–dynamic equations
Prikl. Mekh. Tekh. Fiz., 42:1 (2001), 33–39
-
Invariant submodels of rank two of the equations of gas dynamics
Prikl. Mekh. Tekh. Fiz., 40:2 (1999), 50–55
-
One-dimensional motion of inelastic balls. II: 2-Tied quasicycles
Sibirsk. Mat. Zh., 35:5 (1994), 1006–1025
-
One-diemnsional motion of inelastic balls. I: Reduction to discrete time
Sibirsk. Mat. Zh., 34:6 (1993), 23–33
-
Boundary layer method for semiconductor devices modelling
Mat. Model., 3:8 (1991), 63–71
-
On the Ñauchy problem for the equation $u_{tt}-u_{xx}-\sum_{i,j=1}^{n-1}a_{ij}(x-t)u_{y_iy_j}=0$
Mat. Sb. (N.S.), 102(144):3 (1977), 391–409
-
A note on unsteady near-sonic flows
Dokl. Akad. Nauk SSSR, 185:3 (1969), 538–540
© , 2026