|
|
Publications in Math-Net.Ru
-
Asymptotics for the logarithm of the number of $(k,l)$-solution-free collections in an interval of naturals
Diskretn. Anal. Issled. Oper., 26:2 (2019), 129–144
-
The number of $k$-sumsets in an Abelian group
Diskretn. Anal. Issled. Oper., 25:4 (2018), 97–111
-
The number of sumsets in Abelian group
Diskr. Mat., 30:4 (2018), 96–105
-
Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups
Diskr. Mat., 30:3 (2018), 117–126
-
Independent sets in graphs
Diskr. Mat., 28:1 (2016), 44–77
-
Asymptotics of the number of sum-free sets in groups of prime order
Dokl. Akad. Nauk, 424:4 (2009), 449–451
-
On the Number of Sum-free Sets
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:2 (2009), 139–146
-
Solution of the Cameron–Erdős problem for groups of prime order
Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1503–1509
-
The number of independent sets in graphs
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 3, 33–35
-
On the number and structure of sum-free sets in a segment of positive integers
Diskr. Mat., 15:4 (2003), 141–147
-
On the number of sum-free sets in an interval of natural numbers
Diskr. Mat., 14:3 (2002), 3–7
-
The number of sum-free sets in abelian groups
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 4, 14–18
-
On the number of independent sets in extenders
Diskr. Mat., 13:1 (2001), 56–62
-
On the number of connected sets with given cardinality of a neighborhood in a graph
Diskretn. Anal. Issled. Oper., Ser. 1, 4:3 (1997), 18–34
-
On the possibility of constructing macromodels for $RC$-circuits
Zh. Vychisl. Mat. Mat. Fiz., 35:12 (1995), 1886–1899
-
Sergei Vsevolodovich Yablonskii (on his 70th birthday)
Sibirsk. Zh. Issled. Oper., 1:4 (1994), 3–6
-
On limit distributions of random variables generated by bounded sequences
Trudy Inst. Mat. SO RAN, 27 (1994), 166–176
-
The search of a maximum upper zero of a monotone function on ranked sets
Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991), 1871–1884
-
Asymptotics of the number of monotone functions on partially
ordered sets
Dokl. Akad. Nauk SSSR, 305:2 (1989), 279–283
-
The number of antichains in multilayered ranked sets
Diskr. Mat., 1:2 (1989), 110–128
-
The number of antichains in ranked partially ordered sets
Diskr. Mat., 1:1 (1989), 74–93
-
Boolean function minimization in the class of disjunctive normal forms
Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 25 (1987), 68–116
-
Estimation of the length and the number of dead-end disjunctive normal forms for almost all partial boolean functions
Mat. Zametki, 28:2 (1980), 279–300
-
The order of the neighborhood of maximal intervals for almost all functions of the algebra of logic
Dokl. Akad. Nauk SSSR, 180:1 (1968), 32–35
-
On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions
Mat. Zametki, 4:6 (1968), 649–658
-
Yurii Ivanovich Zhuravlev (on his 70th birthday)
Diskretn. Anal. Issled. Oper., Ser. 1, 12:1 (2005), 3–11
© , 2026