RUS  ENG
Full version
PEOPLE

Sapozhenko Aleksandr Antonovich

Publications in Math-Net.Ru

  1. Asymptotics for the logarithm of the number of $(k,l)$-solution-free collections in an interval of naturals

    Diskretn. Anal. Issled. Oper., 26:2 (2019),  129–144
  2. The number of $k$-sumsets in an Abelian group

    Diskretn. Anal. Issled. Oper., 25:4 (2018),  97–111
  3. The number of sumsets in Abelian group

    Diskr. Mat., 30:4 (2018),  96–105
  4. Asymptotics for the logarithm of the number of $k$-solution-free sets in Abelian groups

    Diskr. Mat., 30:3 (2018),  117–126
  5. Independent sets in graphs

    Diskr. Mat., 28:1 (2016),  44–77
  6. Asymptotics of the number of sum-free sets in groups of prime order

    Dokl. Akad. Nauk, 424:4 (2009),  449–451
  7. On the Number of Sum-free Sets

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:2 (2009),  139–146
  8. Solution of the Cameron–Erdős problem for groups of prime order

    Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009),  1503–1509
  9. The number of independent sets in graphs

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 3,  33–35
  10. On the number and structure of sum-free sets in a segment of positive integers

    Diskr. Mat., 15:4 (2003),  141–147
  11. On the number of sum-free sets in an interval of natural numbers

    Diskr. Mat., 14:3 (2002),  3–7
  12. The number of sum-free sets in abelian groups

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 4,  14–18
  13. On the number of independent sets in extenders

    Diskr. Mat., 13:1 (2001),  56–62
  14. On the number of connected sets with given cardinality of a neighborhood in a graph

    Diskretn. Anal. Issled. Oper., Ser. 1, 4:3 (1997),  18–34
  15. On the possibility of constructing macromodels for $RC$-circuits

    Zh. Vychisl. Mat. Mat. Fiz., 35:12 (1995),  1886–1899
  16. Sergei Vsevolodovich Yablonskii (on his 70th birthday)

    Sibirsk. Zh. Issled. Oper., 1:4 (1994),  3–6
  17. On limit distributions of random variables generated by bounded sequences

    Trudy Inst. Mat. SO RAN, 27 (1994),  166–176
  18. The search of a maximum upper zero of a monotone function on ranked sets

    Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991),  1871–1884
  19. Asymptotics of the number of monotone functions on partially ordered sets

    Dokl. Akad. Nauk SSSR, 305:2 (1989),  279–283
  20. The number of antichains in multilayered ranked sets

    Diskr. Mat., 1:2 (1989),  110–128
  21. The number of antichains in ranked partially ordered sets

    Diskr. Mat., 1:1 (1989),  74–93
  22. Boolean function minimization in the class of disjunctive normal forms

    Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 25 (1987),  68–116
  23. Estimation of the length and the number of dead-end disjunctive normal forms for almost all partial boolean functions

    Mat. Zametki, 28:2 (1980),  279–300
  24. The order of the neighborhood of maximal intervals for almost all functions of the algebra of logic

    Dokl. Akad. Nauk SSSR, 180:1 (1968),  32–35
  25. On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions

    Mat. Zametki, 4:6 (1968),  649–658

  26. Yurii Ivanovich Zhuravlev (on his 70th birthday)

    Diskretn. Anal. Issled. Oper., Ser. 1, 12:1 (2005),  3–11


© Steklov Math. Inst. of RAS, 2026