RUS  ENG
Full version
PEOPLE

Guo Wen Bin

Publications in Math-Net.Ru

  1. New examples of nonpronormal subgroups of odd index in finite simple linear and unitary groups

    Sibirsk. Mat. Zh., 66:4 (2025),  613–620
  2. The Alperin theorem for periodic groups with a finite Sylow $2$-subgroup

    Sibirsk. Mat. Zh., 65:4 (2024),  686–692
  3. Finite groups without elements of order 10: the case of solvable or almost simple groups

    Sibirsk. Mat. Zh., 65:4 (2024),  636–644
  4. Nonpronormal subgroups of odd index in finite simple linear and unitary groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  70–79
  5. Toward a sharp Baer–Suzuki theorem for the $\pi$-radical: exceptional groups of small rank

    Algebra Logika, 62:1 (2023),  3–32
  6. Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation

    Mat. Zametki, 114:5 (2023),  669–678
  7. Finite groups whose prime graphs do not contain triangles. III

    Sibirsk. Mat. Zh., 64:1 (2023),  65–71
  8. When is the search of relatively maximal subgroups reduced to quotient groups?

    Izv. RAN. Ser. Mat., 86:6 (2022),  79–100
  9. The Koolen-Park bound and distance-regular graphs without $m$-clavs

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  64–69
  10. Characterizations of $\sigma$-Solvable Finite Groups

    Mat. Zametki, 111:4 (2022),  506–518
  11. Lattice characterizations of finite supersoluble groups

    Sibirsk. Mat. Zh., 63:3 (2022),  626–638
  12. On $C$-$\mathcal{H}$-permutable subgroups of finite groups

    Sibirsk. Mat. Zh., 63:2 (2022),  437–448
  13. On the Baer–Suzuki Width of Some Radical Classes

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  96–105
  14. Periodic groups saturated with finite simple groups $L_4(q)$

    Algebra Logika, 60:6 (2021),  549–556
  15. Infinite groups containing a proper Hughes subgroup $H_3(G)$

    Algebra Logika, 60:3 (2021),  298–302
  16. On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph

    Diskr. Mat., 33:4 (2021),  61–67
  17. A new characterization of finite $\sigma$-soluble $P\sigma T$-groups

    Sibirsk. Mat. Zh., 62:1 (2021),  131–143
  18. Recognition of the Group $E_6(2)$ by Gruenberg-Kegel Graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  263–268
  19. Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  125–131
  20. Integral Cayley graphs

    Algebra Logika, 58:4 (2019),  445–457
  21. On $\sigma$-embedded and $\sigma$-$n$-embedded subgroups of finite groups

    Sibirsk. Mat. Zh., 60:3 (2019),  506–517
  22. Conjugacy of maximal and submaximal $\mathfrak X$-subgroups

    Algebra Logika, 57:3 (2018),  261–278
  23. Maximal and submaximal $\mathfrak X$-subgroups

    Algebra Logika, 57:1 (2018),  14–42
  24. Characterization of locally finite simple groups of the type $^3D_4$ over fields of odd characteristic in the class of periodic groups

    Sibirsk. Mat. Zh., 59:5 (2018),  1013–1019
  25. On the pronormality of subgroups of odd index in some extensions of finite groups

    Sibirsk. Mat. Zh., 59:4 (2018),  773–790
  26. Finite groups with given weakly $\sigma$-permutable subgroups

    Sibirsk. Mat. Zh., 59:1 (2018),  197–209
  27. Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  43–50
  28. The number of Sylow subgroups in special linear groups of degree $2$

    Algebra Logika, 56:6 (2017),  749–753
  29. Finite groups with $H_\sigma$-subnormally embedded subgroups

    PFMT, 2017, no. 4(33),  84–88
  30. Some notes on the rank of a finite soluble group

    Sibirsk. Mat. Zh., 58:5 (2017),  1181–1190
  31. Finite groups that are products of two normal supersoluble subgroups

    Sibirsk. Mat. Zh., 58:2 (2017),  417–429
  32. On groups whose element orders divide $6$ and $7$

    Sibirsk. Mat. Zh., 58:1 (2017),  88–94
  33. On weakly $S\Phi$-supplemented subgroups of finite groups

    Sibirsk. Mat. Zh., 57:4 (2016),  889–898
  34. On $S\Phi$-embedded subgroups of finite groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  310–318
  35. $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups

    Algebra Logika, 54:3 (2015),  351–380
  36. Gradewise properties of subgroups of finite groups

    Sibirsk. Mat. Zh., 56:3 (2015),  487–497
  37. On the class of groups with pronormal Hall $\pi$-subgroups

    Sibirsk. Mat. Zh., 55:3 (2014),  509–524
  38. On the local case in the Aschbacher theorem for linear and unitary groups

    Sibirsk. Mat. Zh., 55:2 (2014),  296–303
  39. Criteria for the $p$-Solvability and $p$-Supersolvability of Finite Groups

    Mat. Zametki, 94:3 (2013),  455–472
  40. On weakly $\mathrm S$-embedded and weakly $\tau$-embedded subgroups

    Sibirsk. Mat. Zh., 54:5 (2013),  1162–1181
  41. On the intersection of maximal supersoluble subgroups of a finite group

    Tr. Inst. Mat., 21:1 (2013),  48–51
  42. Finite groups with $S$-supplemented $p$-subgroups

    Sibirsk. Mat. Zh., 53:2 (2012),  465–472
  43. On $\mathfrak F_n$-normal subgroups of finite groups

    Sibirsk. Mat. Zh., 52:2 (2011),  250–264
  44. $S$-embedded subgroups of finite groups

    Algebra Logika, 49:4 (2010),  433–450
  45. Finite Groups in Which Every 3-Maximal Subgroup Commutes with All Maximal Subgroups

    Mat. Zametki, 86:3 (2009),  350–359
  46. Automorphisms of Coverings of Strongly Regular Graphs with Parameters (81,20,1,6)

    Mat. Zametki, 86:1 (2009),  22–36
  47. On nonnilpotent groups in which every two 3-maximal subgroups are permutable

    Sibirsk. Mat. Zh., 50:6 (2009),  1255–1268
  48. Finite groups in which Sylow normalizers have nilpotent Hall supplements

    Sibirsk. Mat. Zh., 50:4 (2009),  841–849
  49. $\tau$-primitive subgroups of finite groups

    Sibirsk. Mat. Zh., 50:3 (2009),  703–712
  50. Finite groups in which the normalizers of Sylow 3-subgroups are of odd or primary index

    Sibirsk. Mat. Zh., 50:2 (2009),  344–349
  51. Automorphisms of Terwilliger graphs with $\mu=2$

    Algebra Logika, 47:5 (2008),  584–600
  52. On $X$-$s$-permutable subgroups of finite groups

    Tr. Inst. Mat., 16:1 (2008),  100–105
  53. Cвойства графов без порожденных подграфов $K_{1,3}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  43–52
  54. $X$-quasinormal subgroups

    Sibirsk. Mat. Zh., 48:4 (2007),  742–759
  55. $c$-Semipermutable subgroups of finite groups

    Sibirsk. Mat. Zh., 48:1 (2007),  224–235
  56. The influence of $s$-semipermutable subgroups on the structure of finite groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  191–196
  57. On $\mathfrak{F}$-radicals of finite $\pi$-soluble groups

    Algebra Discrete Math., 2006, no. 3,  49–54
  58. Lattices of subgroup and subsystem functors

    Algebra Logika, 45:6 (2006),  710–730
  59. On a problem of the theory of multiply local formations

    Sibirsk. Mat. Zh., 45:6 (2004),  1263–1270
  60. $G$-Covering systems of subgroups for classes of $p$-supersoluble and $p$-nilpotent finite groups

    Sibirsk. Mat. Zh., 45:3 (2004),  527–539
  61. Two remarks on the identities of lattices of $\omega$-local and $\omega$-compositional formations of finite groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 5,  14–22
  62. Frattini theory for classes of finite universal algebras of Mal'tsev varieties

    Sibirsk. Mat. Zh., 43:6 (2002),  1283–1292
  63. On the influence of the indices of normalizers of Sylow subgroups on the structure of a finite $p$-soluble group

    Sibirsk. Mat. Zh., 43:1 (2002),  120–125
  64. Factorizations of One-Generated Composition Formations

    Algebra Logika, 40:5 (2001),  545–560
  65. On a problem in the theory of step formations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 9,  33–37
  66. Finite groups with given indices of normalizers of Sylow subgroups

    Sibirsk. Mat. Zh., 37:2 (1996),  295–300


© Steklov Math. Inst. of RAS, 2026