RUS  ENG
Full version
PEOPLE

Morozov Vladimir Alekseevich

Publications in Math-Net.Ru

  1. To the inverse heat conduction problem

    Num. Meth. Prog., 15:3 (2014),  411–416
  2. The source control in the problem of heat conduction

    Num. Meth. Prog., 14:1 (2013),  77–81
  3. A variational problem for the biharmonic equation

    Num. Meth. Prog., 13:3 (2012),  409–412
  4. On restoration of noisy signals by a regularization method

    Num. Meth. Prog., 13:1 (2012),  247–252
  5. Continuous and bounded harmonic functions. Exact and approximate methods

    Num. Meth. Prog., 8:1 (2007),  38–60
  6. Regularization of singular systems of linear algebraic equations by shifts

    Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007),  1971–1978
  7. On optimal methods for solving ill-posed problems

    Num. Meth. Prog., 7:1 (2006),  105–107
  8. Some general conditions for regularization of ill-posed variational problems

    Num. Meth. Prog., 5:1 (2004),  31–40
  9. Seminormed factor spaces and the theory of splines

    Num. Meth. Prog., 4:1 (2003),  172–175
  10. Algorithmic foundations of methods for solving ill-posed problems

    Num. Meth. Prog., 4:1 (2003),  130–141
  11. Signal reconstruction by the method of regularization

    Num. Meth. Prog., 2:1 (2001),  27–33
  12. Simulation elastic and inelastic collisions of atoms and molecules for fast molecular beam scattering

    Mat. Model., 11:7 (1999),  29–38
  13. Point-wise discrepancy method for solution of inconsistency systems of equations and inequalities with approximate data

    Fundam. Prikl. Mat., 4:3 (1998),  937–945
  14. Pointwise residual method as applied to some problems of linear algebra and linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1140–1152
  15. Generalized sourcewisity and the rate of convergence of the regularized solutions

    Fundam. Prikl. Mat., 3:1 (1997),  171–177
  16. Regularization of ill-posed problems with normally resolvable operators

    Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997),  139–144
  17. Regularization when there is considerable interference

    Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996),  13–21
  18. On the problem of a “vibrational rainbow” origin in differential cross sections for atom-molecular scattering in keV region

    Mat. Model., 7:6 (1995),  75–84
  19. Estimates for the accuracy of the regularization of nonlinear unstable problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1420–1428
  20. An estimate of the rate of convergence of the discrepancy method for a linear programming problem with approximate data

    Zh. Vychisl. Mat. Mat. Fiz., 30:8 (1990),  1257–1262
  21. Stable numerical methods for solving systems of linear algebraic equations of general form

    Zh. Vychisl. Mat. Mat. Fiz., 29:11 (1989),  1730–1734
  22. An estimate of the error of the solution of systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987),  1416–1418
  23. On the problem of regularization of systems of linear algebraic equations

    Dokl. Akad. Nauk SSSR, 290:2 (1986),  286–289
  24. Necessary and sufficient conditions of regularizability for degenerate systems of linear algebraic equations using the shift method

    Zh. Vychisl. Mat. Mat. Fiz., 26:9 (1986),  1283–1290
  25. On a fast algorithm for the approximate solution of a discrete Wiener–Hopf equation and an estimation of the accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985),  1086–1092
  26. Optimal regularization of ill-posed normally solvable operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 24:11 (1984),  1737–1742
  27. Stable numerical methods for solving simultaneous systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 24:2 (1984),  179–186
  28. The method of quasisolutions on noncompact sets

    Dokl. Akad. Nauk SSSR, 263:5 (1982),  1057–1061
  29. On the solution of operator equations of the first kind by the method of finite-rank approximations

    Dokl. Akad. Nauk SSSR, 247:6 (1979),  1317–1320
  30. Regular methods for the solution of nonlinear operator equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 11,  74–86
  31. $L$-pseudoinversion and its properties

    Dokl. Akad. Nauk SSSR, 233:2 (1977),  291–294
  32. Estimating the accuracy of the solution of ill-posed problems, and the solving systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 17:6 (1977),  1341–1349
  33. Optimal approximation of operators

    Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  3–14
  34. On some applications of the spline method to the solution of operator equations of the first kind

    Dokl. Akad. Nauk SSSR, 229:2 (1976),  300–303
  35. The numerical realization of the method of the optimal residual

    Zh. Vychisl. Mat. Mat. Fiz., 16:6 (1976),  1580–1583
  36. On optimal approximation of operators

    Dokl. Akad. Nauk SSSR, 223:6 (1975),  1307–1310
  37. An optimality principle for the error when solving approximately equations with non-linear operators

    Zh. Vychisl. Mat. Mat. Fiz., 14:4 (1974),  819–827
  38. Linear and nonlinear ill-posed problems

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 11 (1973),  129–178
  39. Nonlinear vector field having an exact particle-like solution with finite energy and phase wave

    TMF, 16:2 (1973),  274–278
  40. The error principle in the solution of incompatible equations by Tikhonov regularization

    Zh. Vychisl. Mat. Mat. Fiz., 13:5 (1973),  1099–1111
  41. The computation of lower bounds of functionals from approximate information

    Zh. Vychisl. Mat. Mat. Fiz., 13:4 (1973),  1045–1049
  42. Numerical algorithms for the selection of the parameter in the regularization method

    Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973),  539–545
  43. Convergence of an approximate method of solving operator equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973),  3–17
  44. The successive Bayesian regularization of algebraic systems of equations

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  464–465
  45. On the approximat e solution of operator equations by the method of splines

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  35–38
  46. The optimality of the discrepancy criterion in the problem of computing the values of unbounded operators

    Zh. Vychisl. Mat. Mat. Fiz., 11:4 (1971),  1019–1024
  47. Spline theory and the problem of the stable computation of the values of an unbounded operator

    Zh. Vychisl. Mat. Mat. Fiz., 11:3 (1971),  545–558
  48. An effective numerical algorithm for constructing pseudosolutions

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  260–262
  49. The solution by the method of regularization of ill-posed problems with nonlinear unbounded operators

    Differ. Uravn., 6:8 (1970),  1453–1458
  50. Error and Erasure Probability in Receiving Signals with Unknown Phase

    Probl. Peredachi Inf., 6:3 (1970),  86–88
  51. Error estimates of the solution of ill-posed problems with linear unbounded operators

    Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970),  1081–1091
  52. The optimal regularization of operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 10:4 (1970),  818–829
  53. A certain stable method for computing the values of unbounded operators

    Dokl. Akad. Nauk SSSR, 185:2 (1969),  267–270
  54. Pseudo-solutions

    Zh. Vychisl. Mat. Mat. Fiz., 9:6 (1969),  1387–1391
  55. The error principle in the solution of operational equations by the regularization method

    Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968),  295–309
  56. Choice of parameter in solving functional equations by the method of regularization

    Dokl. Akad. Nauk SSSR, 175:6 (1967),  1225–1228
  57. On restoring functions by the regularization method

    Zh. Vychisl. Mat. Mat. Fiz., 7:4 (1967),  874–881
  58. On the solution of functional equations by the method of regularization

    Dokl. Akad. Nauk SSSR, 167:3 (1966),  510–512
  59. Regularization of incorrectly posed problems and the choice of regularization parameter

    Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966),  170–175

  60. All-Union School of Young Scientists “Methods of solving incorrect problems and their application”

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  807


© Steklov Math. Inst. of RAS, 2026