RUS  ENG
Full version
PEOPLE

Denisov Aleksandr Mikhailovich

Publications in Math-Net.Ru

  1. Iterative numerical methods for solving the problem of determining the coefficient in the sorption dynamics model

    Zh. Vychisl. Mat. Mat. Fiz., 64:11 (2024),  2184–2193
  2. Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  795–802
  3. On the uniqueness of a solution to the problem of finding a composite source in the heat equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  120–127
  4. Approximate solution of inverse problems for the heat equation with a singular perturbation

    Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021),  2040–2049
  5. Existence of a solution of the inverse coefficient problem for a quasilinear hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  587–596
  6. Uniqueness and nonuniqueness of the solution to the problem of determining the source in the heat equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1754–1759
  7. Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary

    Mat. Model., 27:11 (2015),  95–109
  8. Problems of determining the unknown source in parabolic and hyperbolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  830–835
  9. Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1756–1766
  10. Inverse problem for a quasilinear system of partial differential equations with a nonlocal boundary condition

    Zh. Vychisl. Mat. Mat. Fiz., 54:10 (2014),  1571–1579
  11. Inverse problem for the diffusion equation in the case of spherical symmetry

    Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1784–1790
  12. Asymptotic expansions of solutions to inverse problems for a hyperbolic equation with a small parameter multiplying the highest derivative

    Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013),  744–752
  13. A numerical method for determining the localized initial condition for some mathematical models of the heart excitation

    Mat. Model., 24:7 (2012),  59–66
  14. Method for determining projection of the arrhythmogenic focus on a heart surface based on solution of the inverse electrocardiography problem

    Mat. Model., 24:4 (2012),  22–30
  15. Inverse problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  139–146
  16. Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary

    Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012),  1426–1436
  17. Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential

    Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1695–1702
  18. Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1476–1489
  19. A numerical method for determining the inhomogeneity boundary in the Dirichlet problem for the Laplace equation in a piecewise-homogeneous medium

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1462–1470
  20. Numerical solution of an inverse electrocardiography problem for a medium with a piecewise-constant electrical conductivity coefficient

    Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010),  1233–1239
  21. The inverse problem for mathematical models of heart excitation

    Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010),  539–543
  22. Nonlinear source in diffusion filtering methods for image processing

    Zh. Vychisl. Mat. Mat. Fiz., 47:10 (2007),  1701–1705
  23. Integro-functional equations in the inverse source problem for the wave equation

    Differ. Uravn., 42:9 (2006),  1155–1165
  24. Numerical method for solving an inverse problem for a population model

    Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006),  490–500
  25. Integro-Functional Equations for Solving the Inverse Problem for a Nonlinear Ordinary Differential Equation

    Differ. Uravn., 41:9 (2005),  1203–1209
  26. Monotone iterative method for solving an inverse problem of sorption dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2197–2202
  27. An existence theorem for an inverse problem for a semilinear hyperbolic system

    Differ. Uravn., 40:9 (2004),  1155–1165
  28. Iteration methods for solution of an inverse problem for a population model

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1480–1489
  29. Existence and Uniqueness of the Solution of a System of Integral Equations of the First Kind

    Differ. Uravn., 39:9 (2003),  1201–1208
  30. An iterative method of the inverse problem solving for a nonlinear ordinary differential equation

    Zh. Vychisl. Mat. Mat. Fiz., 43:11 (2003),  1697–1705
  31. Solvability of the Inverse Problem for a Quasilinear Hyperbolic Equation

    Differ. Uravn., 38:9 (2002),  1155–1164
  32. The Inverse Problem for a Quasilinear Integro-Differential Equation

    Differ. Uravn., 37:10 (2001),  1350–1356
  33. An inverse problem for a hyperbolic equation

    Differ. Uravn., 36:10 (2000),  1427–1429
  34. On a nonlinear integral equation of the first kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 11,  34–41
  35. Inverse problems for a one-dimensional nonlinear stationary equation

    Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1725–1738
  36. The problem of determining a nonlinear coefficient in a system of partial differential equations

    Differ. Uravn., 35:7 (1999),  926–934
  37. Two-dimensional Doppler tomography

    Zh. Vychisl. Mat. Mat. Fiz., 36:11 (1996),  126–133
  38. Local and global uniqueness of a solution to the problem of determining a nonlinear coefficient in a system of partial differential equations

    Sibirsk. Mat. Zh., 36:1 (1995),  60–71
  39. Uniqueness of the determination of the nonlinear coefficient of a system of partial differential equations in the small and in the large

    Dokl. Akad. Nauk, 338:4 (1994),  444–445
  40. Inverse problems for the stationary nonlinear heat equation

    Mat. Model., 5:8 (1993),  57–62
  41. The problem of determining the coefficient in the nonlinear stationary heat-conduction equation

    Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993),  1294–1304
  42. The uniqueness of the solution of the problem of determining nonlinear kinetic coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 32:4 (1992),  658–663
  43. Inverse problems for nonlinear ordinary differential equations

    Dokl. Akad. Nauk SSSR, 307:5 (1989),  1040–1042
  44. Some inverse problems of nonequilibrium dynamics of sorption

    Dokl. Akad. Nauk SSSR, 276:1 (1984),  100–102
  45. A method of solution of equations of the first kind in a Hilbert space

    Dokl. Akad. Nauk SSSR, 274:3 (1984),  528–530
  46. Approximate solution of operator equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983),  730–732
  47. Uniqueness of the solution of some inverse problems for the heat equation with a piecewise-constant coefficient

    Zh. Vychisl. Mat. Mat. Fiz., 22:4 (1982),  858–864
  48. The numerical solution of the inverse scattering problem

    Zh. Vychisl. Mat. Mat. Fiz., 17:3 (1977),  753–756
  49. The approximate solution of a Volterra equation of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975),  1053–1056
  50. The approximation of quasisolutions of certain integral equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 14:1 (1974),  222–230
  51. On he order of approximation when solving a Fredholm equation of the first kind with a kernel of special type

    Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973),  200–204
  52. The approximation of the quasisolutions of a Fredholm integral equation of the first kind of a special form

    Zh. Vychisl. Mat. Mat. Fiz., 12:6 (1972),  1565–1568
  53. Approximation of quasi-solutions of Fredholm's equation of the first kind with a kernel of special form

    Zh. Vychisl. Mat. Mat. Fiz., 11:5 (1971),  1307–1311

  54. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  55. On the work of A. N. Tikhonov

    Mat. Model., 13:12 (2001),  3–5
  56. Anatoliǐ Serafimovich Il'inskiǐ (on the occasion of his sixtieth birthday)

    Differ. Uravn., 35:8 (1999),  1011–1012
  57. Andreǐ Nikolaevich Tikhonov (on the occasion of the ninetieth anniversary of his birth)

    Differ. Uravn., 32:10 (1996),  1299–1302
  58. All-Union School of Young Scientists “Methods of solving incorrect problems and their application”

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  807


© Steklov Math. Inst. of RAS, 2026