RUS  ENG
Full version
PEOPLE

Kartashov Èduard Mikhailovich

Publications in Math-Net.Ru

  1. Analytical solutions to generalized problems of locally nonequilibrium heat transfer: Operational method

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:4 (2025),  624–643
  2. Generalized model representations of the theory thermal shock

    Mat. Model., 35:8 (2023),  14–30
  3. Thermal state of a region with a thermally insulated moving boundary

    TVT, 61:5 (2023),  714–722
  4. Generalized model representations of the theory thermal shock for local non-equilibrium processes heat transfer

    Keldysh Institute preprints, 2022, 100, 28 pp.
  5. Boundary value problems for parabolic equations in noncylindrical domains

    TVT, 60:5 (2022),  725–739
  6. Model representations of heat stroke of a massive body with an internal cavity

    Mat. Model., 33:4 (2021),  116–132
  7. Analytical solutions to models of local nonequilibrium heat transfer

    TVT, 59:2 (2021),  212–220
  8. Analytical approaches to the analysis of unsteady heat conduction for partially bounded regions

    TVT, 58:3 (2020),  402–411
  9. Heat conduction at a variable heat-transfer coefficient

    TVT, 57:5 (2019),  694–701
  10. Analytic solution of single-phase Stefan problem

    Mat. Model., 20:3 (2008),  77–86
  11. Model ideas of thermal fracture on the basis of the theory of strenght

    Mat. Model., 19:11 (2007),  11–22
  12. Model ideas of thermal shock with impulse and pulse thermal loading on the basis of generalized equation of energy

    Mat. Model., 17:4 (2005),  81–95
  13. The new model ideas in the problem of thermal shock

    Mat. Model., 14:2 (2002),  95–108
  14. New integral relationships based on the Tikhonov–Samarsky potential for analytical solutions boundary problems of nonsteady transfer

    Mat. Model., 10:5 (1998),  119–127
  15. The method of Green functions in solving boundary value problems for equations of parabolic type in noncylindrical domains

    Dokl. Akad. Nauk, 351:1 (1996),  32–36
  16. Thermal impact problem for a region with moving boundaries in dynamic thermoelasticity models

    Mat. Model., 7:10 (1995),  3–11
  17. On the threshold stress in polymers in brittle state

    Dokl. Akad. Nauk, 338:6 (1994),  748–751
  18. To the thermofluctuation theory of brittle fracture

    Fizika Tverdogo Tela, 31:9 (1989),  71–75
  19. A method of the solution to boundary value problems for heat transfer in a region with boundary moving according to a random law

    Dokl. Akad. Nauk SSSR, 198:2 (1971),  323–326
  20. Об одной задаче вынужденной диффузии в области с подвижной границей

    TVT, 5:2 (1967),  308–316
  21. A diffusion problem in a two-medium system

    Zh. Vychisl. Mat. Mat. Fiz., 7:6 (1967),  1423–1429


© Steklov Math. Inst. of RAS, 2026