RUS  ENG
Full version
PEOPLE

Kuznetsov Ivan Vladimirovich

Publications in Math-Net.Ru

  1. Kelvin–Voigt equations characterized by abruptly changing density

    Prikl. Mekh. Tekh. Fiz., 66:1 (2025),  104–116
  2. Kelvin–Voigt impulse equations of incompressible viscoelastic fluid dynamics

    Prikl. Mekh. Tekh. Fiz., 65:5 (2024),  28–42
  3. The one-dimensional impulsive Barenblatt–Zheltov–Kochina equation with a transition layer

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  724–740
  4. A shock layer arising as the source term collapses in the $p(\boldsymbol{x})$-Laplacian equation

    Probl. Anal. Issues Anal., 9(27):3 (2020),  31–53
  5. Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations

    Sib. Èlektron. Mat. Izv., 15 (2018),  1158–1173
  6. Existence of entropy measure-valued solutions for forward-backward $p$-parabolic equations

    Sib. Èlektron. Mat. Izv., 14 (2017),  774–793
  7. Genuinely nonlinear forward-backward ultra-parabolic equations

    Sib. Èlektron. Mat. Izv., 14 (2017),  710–731
  8. Kinetic formulation of forward-backward parabolic equations

    Sib. Èlektron. Mat. Izv., 13 (2016),  930–949
  9. Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014),  44–65
  10. Entropy Solutions of Differential Equations with Variable Parabolicity Direction

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:4 (2012),  82–100
  11. On equations of motion of a nonlinear hydroelastic structure

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  174–191
  12. Entropy solutions to a second order forward-backward parabolic differential equation

    Sibirsk. Mat. Zh., 46:3 (2005),  594–619


© Steklov Math. Inst. of RAS, 2026