RUS  ENG
Full version
PEOPLE

Kirillova Faina Mikhailovna

Publications in Math-Net.Ru

  1. On the problem of optimal control of dynamic systems in real time

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183 (2020),  98–112
  2. Some aspects of real-time control of linear stationary dynamic systems

    Bulletin of Irkutsk State University. Series Mathematics, 27 (2019),  15–27
  3. On asymptotic optimization methods for quasilinear control systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  62–72
  4. Application of linear programming techniques for controlling linear dynamic plants in real time

    Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016),  394–408
  5. Optimal real-time control of multidimensional dynamic plant

    Avtomat. i Telemekh., 2015, no. 1,  121–135
  6. On the optimal synthesis problem for control systems

    Bulletin of Irkutsk State University. Series Mathematics, 14 (2015),  55–63
  7. Observation of linear systems on the principle of disclosable loop

    PFMT, 2014, no. 4(21),  60–69
  8. Real-time optimal control of a special distributed parameter system

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1839–1850
  9. Optimal control of a dynamic system with multiple uncertainty in the initial state as based on imperfect measurements of input and output signals

    Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012),  1215–1230
  10. Optimal control of an object when it is aimed at a mobile target under uncertainty

    Avtomat. i Telemekh., 2011, no. 3,  15–35
  11. Optimal control based on a preposteriori estimates of set-membership uncertainty

    Avtomat. i Telemekh., 2011, no. 1,  80–94
  12. On optimal control methods to dynamical object at its approaching to a mobile aim

    Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011),  60–74
  13. Decentralized optimal control of dynamical systems under uncertainty

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1209–1227
  14. Optimal control problems with moving targets

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  16–21
  15. Optimal preposterior observation of dynamic systems

    Avtomat. i Telemekh., 2009, no. 8,  70–83
  16. Optimal control under permanent disturbances

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  52–68
  17. Optimal control of linear systems under uncertainty

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  56–72
  18. Optimal discrete-pulse control of linear systems

    Avtomat. i Telemekh., 2008, no. 3,  103–125
  19. Constructing open-loop and closed-loop solutions of linear-quadratic optimal control problems

    Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008),  1748–1779
  20. Decentralized optimal control of a group of dynamical objects

    Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008),  593–609
  21. Optimal control of the delay linear systems with allowance for the terminal state constraints

    Avtomat. i Telemekh., 2007, no. 12,  3–20
  22. Parallelization of computations in the optimal control of large dynamical systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12,  3–20
  23. Optimal guaranteed control of delay systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  27–46
  24. Real-time calculation of the current state estimates for a class of delay systems

    Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  1972–1986
  25. Real-time calculation of current optimal feedbacks for a delay system

    Zh. Vychisl. Mat. Mat. Fiz., 46:10 (2006),  1744–1757
  26. Calculating an optimal program and an optimal control in a linear problem with a state constraint

    Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2112–2130
  27. Numerical optimization of time-dependent multidimensional systems under polyhedral constraints

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  617–636
  28. Optimal control by dynamic controllers

    Avtomat. i Telemekh., 2004, no. 5,  8–28
  29. A programmed and a positional solution of a terminal linearly convex optimal control problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12,  3–16
  30. Optimal control of multidimensional systems by inaccurate measurements of their output signals

    Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004),  35–57
  31. The indirect optimal control of dynamical systems

    Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004),  444–466
  32. The construction of optimal feedback from mathematical models with uncertainty

    Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  265–286
  33. Design of Feedback for Systems Executing a Given Motion

    Avtomat. i Telemekh., 2003, no. 8,  26–39
  34. Design of Optimal Feedbacks in the Class of Inertial Controls

    Avtomat. i Telemekh., 2003, no. 2,  22–49
  35. Optimization of dynamical systems in a class of discrete controls of finite degree

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 12,  3–30
  36. Optimization of the Multidimensional Control Systems with Parallelepiped Constraints

    Avtomat. i Telemekh., 2002, no. 3,  3–26
  37. Stabilization of systems with delays by optimal control methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 12,  44–54
  38. Optimal control of nonlinear systems

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  969–995
  39. The Classical Regulation Problem: Its Solution by Optimal Control Methods

    Avtomat. i Telemekh., 2001, no. 6,  18–29
  40. On the problem of the synthesis of optimal systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  10–20
  41. Numerical methods for open loop and closed loop optimization of piecewise linear systems

    Zh. Vychisl. Mat. Mat. Fiz., 41:11 (2001),  1658–1674
  42. Algorithms for open-loop and closed-loop optimization of control systems with intermediate state contraints

    Zh. Vychisl. Mat. Mat. Fiz., 41:10 (2001),  1485–1504
  43. Numerical methods for open-loop and closed-loop optimization of linear control systems

    Zh. Vychisl. Mat. Mat. Fiz., 40:6 (2000),  838–859
  44. Positional solution of a linear problem of optimal hierarchical control

    Avtomat. i Telemekh., 1998, no. 2,  3–15
  45. Asymptotic optimization of linear dynamical systems in the class of smooth bounded controls

    Differ. Uravn., 34:2 (1998),  175–183
  46. Synthesis of optimal controls of state feedback type in a linear guidance problem

    Differ. Uravn., 34:1 (1998),  7–17
  47. An adaptive method for solving $l_1$-extremum value problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1461–1472
  48. A method for constructing the local points of the Nash equilibrium in a linear game problem

    Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  912–917
  49. Stabilization of Linear Dynamic Systems by Low-Inertia Controls. II. Continuous Stabilizer

    Avtomat. i Telemekh., 1997, no. 5,  45–52
  50. Stabilization of Linear Dynamic Systems by Low-Inertia Controls. I. The Accompanying Optimal Control Problem

    Avtomat. i Telemekh., 1997, no. 4,  14–21
  51. Asymptotic minimization of the full moment of control actions

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1427–1438
  52. Problems of Optimal Control and Observation for Uncertain Dynamic Systems with Aftereffects

    Avtomat. i Telemekh., 1996, no. 9,  117–130
  53. Closed-Loop State Feedback for Optimization of Uncertain Control Systems. II. Multiply Closed Feedback

    Avtomat. i Telemekh., 1996, no. 8,  90–99
  54. Subtended Feedback with Respect to State for Optimization of Uncertain Control Systems. I. Single Loop

    Avtomat. i Telemekh., 1996, no. 7,  121–130
  55. Stabilization of Dynamic Systems under the Presence of Delays in the Feedback Loop

    Avtomat. i Telemekh., 1996, no. 6,  31–39
  56. Optimal feedback based on a mathematical model with test perturbations

    Dokl. Akad. Nauk, 349:3 (1996),  313–315
  57. Closable feedback for guaranteed optimization of uncertain control systems

    Dokl. Akad. Nauk, 347:2 (1996),  180–183
  58. Optimization of systems with multidimensional controls according to criteria that are invariant with respect to some of the control actions

    Zh. Vychisl. Mat. Mat. Fiz., 36:1 (1996),  52–65
  59. On a constructive theory of the optimal observation of dynamical systems

    Dokl. Akad. Nauk, 345:3 (1995),  316–319
  60. Synthesis of optimal controls for dynamic systems with incomplete and uncertain information about their states

    Trudy Mat. Inst. Steklov., 211 (1995),  140–152
  61. The solution of non-stationary problems of linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 35:2 (1995),  293–302
  62. An optimal damper for dynamical systems

    Avtomat. i Telemekh., 1994, no. 5,  3–12
  63. Asymptotic optimization of linear dynamical systems in a class of low-inertia controls

    Avtomat. i Telemekh., 1994, no. 4,  38–46
  64. Optimal positional control of a group of plants

    Avtomat. i Telemekh., 1994, no. 2,  23–31
  65. Optimal positional observation of linear systems

    Dokl. Akad. Nauk, 339:4 (1994),  461–464
  66. Time-optimal positional control of linear time-dependent systems

    Dokl. Akad. Nauk, 337:4 (1994),  460–462
  67. Piecewise-linear functions of several variables; their modelling, local behaviour and extrema

    Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  658–668
  68. A controller for the sliding optimization of dynamic control systems

    Zh. Vychisl. Mat. Mat. Fiz., 34:4 (1994),  617–622
  69. An algorithm for the optimization in real time of a partially defined linear control system. II. Constantly acting perturbations

    Avtomat. i Telemekh., 1993, no. 5,  19–27
  70. An algorithm for the optimization in real time of a partially defined linear control system

    Avtomat. i Telemekh., 1993, no. 4,  34–43
  71. Synthesis of an optimal control system with piecewise linear input

    Avtomat. i Telemekh., 1993, no. 3,  71–79
  72. Network models and nonlinear programming methods

    Dokl. Akad. Nauk, 332:4 (1993),  405–407
  73. An asymptotically optimal controller for a quasilinear system

    Dokl. Akad. Nauk, 332:2 (1993),  138–141
  74. Optimal feedback for a discrete system with disturbance compensation. II. Synthesis of an optimal regulator

    Avtomat. i Telemekh., 1992, no. 4,  33–39
  75. Optimal feedback for a discrete system with disturbance compensation. I. Synthesis of an optimal estimator

    Avtomat. i Telemekh., 1992, no. 1,  52–62
  76. An optimal regulator for linear systems with delay with finite-dimensional terminal constraints

    Dokl. Akad. Nauk, 324:1 (1992),  11–15
  77. Synthesis of adaptive optimal controls for linear dynamical systems

    Dokl. Akad. Nauk, 323:5 (1992),  811–815
  78. A method for optimizing a linear dynamical system with piecewise-linear input

    Differ. Uravn., 28:11 (1992),  1882–1890
  79. Global maximization of special classes of convex functions on a convex polyhedral set

    Zh. Vychisl. Mat. Mat. Fiz., 32:8 (1992),  1313–1320
  80. Synthesis of a time-optimal discrete system

    Avtomat. i Telemekh., 1991, no. 12,  92–99
  81. A finite algorithm for constructing a programmed solution of a partially defined linear problem of optimal control

    Avtomat. i Telemekh., 1991, no. 7,  33–41
  82. Construction of optimal controls of feedback type in a linear problem

    Dokl. Akad. Nauk SSSR, 320:6 (1991),  1294–1299
  83. Dual optimization of dynamical systems

    Dokl. Akad. Nauk SSSR, 317:1 (1991),  15–19
  84. An algorithm for optimizing nonlinear dynamical systems

    Dokl. Akad. Nauk SSSR, 313:3 (1990),  537–540
  85. The construction of a solution of the alternative linear programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 30:8 (1990),  1150–1156
  86. An optimization algorithm for a quasilinear control system

    Dokl. Akad. Nauk SSSR, 293:1 (1987),  22–26
  87. Problems of the control of finite-dimensional systems

    Avtomat. i Telemekh., 1986, no. 11,  5–29
  88. A direct accurate method то optimize a linear dynamic multi-input system

    Avtomat. i Telemekh., 1986, no. 2,  6–13
  89. Solution of linearly quadratic extremal problems

    Dokl. Akad. Nauk SSSR, 280:3 (1985),  529–533
  90. A dual exact method of solving a linear terminal control problem

    Avtomat. i Telemekh., 1984, no. 1,  48–57
  91. Algorithms for solving a linear optimal control problem

    Dokl. Akad. Nauk SSSR, 274:5 (1984),  1048–1052
  92. A direct accurate algorithm for design of optimal control in a linear problem

    Avtomat. i Telemekh., 1983, no. 8,  30–38
  93. The $\epsilon$-maximum principle for suboptimal controls

    Dokl. Akad. Nauk SSSR, 268:3 (1983),  525–529
  94. On methods for solving the general problem of convex quadratic programming

    Dokl. Akad. Nauk SSSR, 258:6 (1981),  1289–1293
  95. Construction of first-order algorithms to solve optimal-control problems

    Dokl. Akad. Nauk SSSR, 254:3 (1980),  562–566
  96. On the theory of necessary conditions for optimality in discrete control systems

    Upravliaemie systemy, 1979, no. 18,  14–25
  97. Mathematical theory of optimal control

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 16 (1979),  55–97
  98. A primal and a dual minimal feasible methods for solving the general linear programming problem

    Avtomat. i Telemekh., 1977, no. 6,  85–96
  99. Methods of optimal control

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 6 (1976),  133–259
  100. Necessary conditions for optimality of controls in hybrid systems

    Upravliaemie systemy, 1975, no. 14,  24–33
  101. Controllability of linear non-stationary systems

    Dokl. Akad. Nauk SSSR, 225:5 (1975),  1035–1037
  102. The discrete maximum principle

    Dokl. Akad. Nauk SSSR, 213:1 (1973),  19–22
  103. Necessary optimality conditions of equality type in discrete systems

    Differ. Uravn., 9:3 (1973),  542–546
  104. Controllability of linear stationary systems

    Dokl. Akad. Nauk SSSR, 203:3 (1972),  537–539
  105. Theory of the controllability of linear discrete systems. III. Systems with aftereffect

    Differ. Uravn., 8:7 (1972),  1283–1291
  106. Theory of the controllability of linear discrete systems. II. Ordinary systems

    Differ. Uravn., 8:6 (1972),  1081–1091
  107. Theory of the controllability of linear discrete systems. I. The defining equation

    Differ. Uravn., 8:5 (1972),  767–773
  108. О линейных дифференциальных играх нескольких лиц

    Upravliaemie systemy, 1971, no. 10,  3–9
  109. Controllability of linear two-parameter discrete systems

    Dokl. Akad. Nauk SSSR, 199:6 (1971),  1231–1233
  110. A maximum principle for the optimization of systems with heredity

    Dokl. Akad. Nauk SSSR, 194:5 (1970),  995–998
  111. On the theory of necessary conditions for higher order optimality

    Differ. Uravn., 6:4 (1970),  665–676
  112. Application of the principle of the maximum to the calculation of optimum equations of discrete systems

    Dokl. Akad. Nauk SSSR, 189:5 (1969),  963–966
  113. The maximum principle for L. S. Pontrjagin's extremals

    Differ. Uravn., 4:6 (1968),  963–972
  114. Optimal processes in two-parameter discrete systems

    Dokl. Akad. Nauk SSSR, 175:1 (1967),  17–19
  115. Relative controllability of linear dynamic sytems with lag

    Dokl. Akad. Nauk SSSR, 174:6 (1967),  1260–1263
  116. On the problem of controllability of linear systems with aftereffect

    Differ. Uravn., 3:3 (1967),  436–445
  117. Optimal control in a statistical problem

    Differ. Uravn., 2:11 (1966),  1415–1422
  118. The statistical problem of optimal control of a linear system

    Dokl. Akad. Nauk SSSR, 164:1 (1965),  16–19
  119. Optimization of convex functionals on trajectories of linear systems

    Dokl. Akad. Nauk SSSR, 156:5 (1964),  1007–1010
  120. On the existence of an optimal control of a linear system with a random perturbation

    Sibirsk. Mat. Zh., 5:1 (1964),  86–93
  121. Some questions in the theory of optimal control

    Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 3,  48–58
  122. On the continuous dependence on the initial data and parameters of the solution of an optimal control problem

    Uspekhi Mat. Nauk, 17:4(106) (1962),  141–146
  123. The problem of existence of optimal trajectories of nonlinear systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 2,  41–53
  124. The correctness of the formulation of a problem in optimal regulation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 4,  113–126

  125. Vladimir Ivanovich Zubov

    Differ. Uravn., 36:10 (2000),  1299–1300


© Steklov Math. Inst. of RAS, 2026