RUS  ENG
Full version
PEOPLE

Bogomolov Sergei Vladimirovich

Publications in Math-Net.Ru

  1. Stochastic formalization of the gas dynamic hierarchy

    Computer Research and Modeling, 14:4 (2022),  767–779
  2. Boltzmann equation without molecular chaos hypothesis

    Mat. Model., 33:1 (2021),  3–24
  3. Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field

    Mat. Model., 31:8 (2019),  120–142
  4. Discontinuous particles method on gas dynamic examples

    Mat. Model., 31:2 (2019),  63–77
  5. On a stability of discontinuous particle method for transfer equation

    Mat. Model., 29:9 (2017),  3–18
  6. Micro-macro Fokker–Planck–Kolmogorov models for a gas of rigid spheres

    Mat. Model., 28:2 (2016),  65–85
  7. Towards a stochastic diffusion gas model verification

    Mat. Model., 25:11 (2013),  17–32
  8. On a diffusion gas model in phase space at moderate Knudsen numbers

    Mat. Model., 24:8 (2012),  45–64
  9. Stochastic quasi gas dynamics equations. Viscous gas case

    Mat. Model., 22:12 (2010),  49–64
  10. Quasi gas dynamics equations

    Mat. Model., 21:12 (2009),  145–151
  11. On Fokker–Planck model for Boltzmann collision integral at moderate Knudsen numbers

    Mat. Model., 21:1 (2009),  111–117
  12. Explicit particle method, non-smoothing gas-dynamic discontinuities

    Mat. Model., 19:3 (2007),  74–86
  13. To consistency of a non-smoothing particle method

    Mat. Model., 16:7 (2004),  92–100
  14. Fokker–Plank equation for a gas at moderate Knudsen numbers

    Mat. Model., 15:4 (2003),  16–22
  15. Particle method. Incompressible fluid

    Mat. Model., 15:1 (2003),  46–58
  16. The shallow water wave simulating by particle method

    Mat. Model., 14:3 (2002),  103–116
  17. Accuracy increasing of the splitting method for Boltzmann equation

    Mat. Model., 11:10 (1999),  100–105
  18. Gas flow in pipeUnes with leaks mathematical modeling

    Mat. Model., 10:11 (1998),  82–92
  19. Gas flow in pipelines with leaks mathematical modeling

    Mat. Model., 10:10 (1998),  8–18
  20. Particle method for system of gas dynamics equations

    Mat. Model., 10:7 (1998),  93–100
  21. A conservative particle method for a quasilinear transport equation

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1602–1607
  22. Method of particles with weights for Burgers equation

    Mat. Model., 6:5 (1994),  77–82
  23. Particle method for Burgers equation

    Mat. Model., 3:12 (1991),  115–119
  24. A stochastic hydrodynamical model

    Mat. Model., 2:11 (1990),  85–88
  25. Convergence of a difference scheme for solving a system of partial differential equations of the particle method for the Boltzmann equation

    Zh. Vychisl. Mat. Mat. Fiz., 28:8 (1988),  1264–1267
  26. Fluctuations of the method of particles for the vlasov equation

    Zh. Vychisl. Mat. Mat. Fiz., 28:2 (1988),  290–292
  27. Convergence of the method of summary approximation for the Boltzmann equation

    Zh. Vychisl. Mat. Mat. Fiz., 28:1 (1988),  119–126
  28. Convergence of the method of summary approximation for a system of Vlasov equations

    Differ. Uravn., 17:3 (1981),  510–518

  29. In memory of Igor' Germogenovich Pospelov

    Mat. Model., 35:2 (2023),  126


© Steklov Math. Inst. of RAS, 2026