RUS  ENG
Full version
PEOPLE

Beresnev Vladimir Leonidovich

Publications in Math-Net.Ru

  1. A branch, bound, and cuts algorithm for the dynamic competitive facility location problem

    Diskretn. Anal. Issled. Oper., 31:4 (2024),  5–26
  2. Stability of vertex covers in a game with finitely many steps

    Diskretn. Anal. Issled. Oper., 31:2 (2024),  28–45
  3. Upper bound procedure for dynamic competitive facility location problem with profit targeting

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  960–971
  4. Additional constraints for dynamic competitive facility location problem

    Diskretn. Anal. Issled. Oper., 30:3 (2023),  43–56
  5. Upper bound for the competitive facility location problem with demand uncertainty

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  20–25
  6. Computing an upper bound in the two-stage bi-level competitive location model

    Diskretn. Anal. Issled. Oper., 29:3 (2022),  7–23
  7. Planning a defense that minimizes a resource deficit in the worst-case scenario of supply network destruction

    Diskretn. Anal. Issled. Oper., 27:3 (2020),  5–27
  8. A bilevel “Attacker–Defender” model to choosing the composition of attack means

    Diskretn. Anal. Issled. Oper., 26:4 (2019),  16–33
  9. A cut generation algorithm of finding an optimal solution in a market competition

    Diskretn. Anal. Issled. Oper., 26:2 (2019),  5–29
  10. Bilevel “defender–attacker” model with multiple attack scenarios

    Diskretn. Anal. Issled. Oper., 25:3 (2018),  5–22
  11. An upper bound for the competitive location and capacity choice problem with multiple demand scenarios

    Diskretn. Anal. Issled. Oper., 24:4 (2017),  5–21
  12. A capacitated competitive facility location problem

    Diskretn. Anal. Issled. Oper., 23:1 (2016),  35–50
  13. On the competitive facility location problem with a free choice of suppliers

    Avtomat. i Telemekh., 2014, no. 4,  94–105
  14. Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers

    Diskretn. Anal. Issled. Oper., 21:2 (2014),  3–23
  15. Local search algorithms for the problem of competitive location of enterprises

    Avtomat. i Telemekh., 2012, no. 3,  12–27
  16. Local search over generalized neighborhood for an optimization problem of pseudo-Boolean functions

    Diskretn. Anal. Issled. Oper., 18:4 (2011),  3–16
  17. Approximation algorithms for the competitive facility location problem

    Diskretn. Anal. Issled. Oper., 17:6 (2010),  3–19
  18. Математическая модель конкурентной борьбы на рынке

    Sib. Zh. Ind. Mat., 12:1 (2009),  11–24
  19. Upper bounds for goal functions of discrete competitive facility location problems

    Diskretn. Anal. Issled. Oper., 15:4 (2008),  3–24
  20. An efficient algorithm for solving the problem of minimizing polynomials in Boolean variables with the connectedness property

    Diskretn. Anal. Issled. Oper., Ser. 2, 12:1 (2005),  3–11
  21. An approximate algorithm for the problem of minimizing polynomials of Boolean variables

    Diskretn. Anal. Issled. Oper., Ser. 2, 5:2 (1998),  3–19
  22. An efficient algorithm for the problem of locating production with a totally balanced matrix

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:1 (1998),  20–31
  23. Mathematical models of planning the development of technical means

    Diskretn. Anal. Issled. Oper., Ser. 2, 4:1 (1997),  4–29
  24. An algorithm for a problem on maximal flow with gains

    Upravliaemie systemy, 1990, no. 30,  17–24
  25. Algorithms for the minimization of certain classes of polynomials of Boolean variables

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 10 (1988),  5–17
  26. Algorithm for the solution of a problem of optimal choice of a dynamic series of goods

    Upravliaemie systemy, 1984, no. 24,  3–19
  27. Matrices having the property of connectedness

    Upravliaemie systemy, 1979, no. 19,  3–13
  28. A program for the solution algorithm of a choice problem of an optimal collection

    Upravliaemie systemy, 1978, no. 17,  4–12
  29. The problem of optimal choice for series of products and completion nodes. I

    Upravliaemie systemy, 1977, no. 16,  35–46
  30. Об одной задаче математической теории стандартизации. II

    Upravliaemie systemy, 1974, no. 13,  3–9
  31. Алгоритм неявного перебора для задачи типа размещения и стандартизации

    Upravliaemie systemy, 1974, no. 12,  24–34
  32. Об одной задаче математической теории стандартизации. I

    Upravliaemie systemy, 1973, no. 11,  43–54
  33. A certain class of problems of optimization of the parameters of an industrial system

    Upravliaemie systemy, 1971, no. 9,  65–74

  34. Modern problems in mathematical programming

    Avtomat. i Telemekh., 2014, no. 4,  3–4
  35. Yurii Ivanovich Zhuravlev (on his 70th birthday)

    Diskretn. Anal. Issled. Oper., Ser. 1, 12:1 (2005),  3–11
  36. Aleksandr Alekseevich Borovkov (on the occasion of his seventieth birthday)

    Sibirsk. Mat. Zh., 42:2 (2001),  243–248
  37. Mikhail Alekseevich Lavrent'ev (on the centenary of his birth)

    Sibirsk. Mat. Zh., 41:5 (2000),  969–983
  38. Yurii Leonidovich Ershov (on the occasion of his sixtieth birthday)

    Sibirsk. Mat. Zh., 41:2 (2000),  243–246
  39. Sergei Konstantinovich Godunov (on the occasion of his seventieth birthday)

    Sibirsk. Mat. Zh., 40:3 (1999),  483–484
  40. Sergei L'vovich Sobolev (1908–1989)

    Sibirsk. Mat. Zh., 39:4 (1998),  723–729
  41. On the fortieth anniversary of the Siberian Branch of the Academy of Sciences

    Sibirsk. Mat. Zh., 38:3 (1997),  483–484


© Steklov Math. Inst. of RAS, 2026