RUS  ENG
Full version
PEOPLE

Tsyganok Irina Ivanovna

Publications in Math-Net.Ru

  1. A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 236 (2024),  22–30
  2. Lichnerowicz Laplacian from the Viewpoint of Bochner Technique

    Mat. Zametki, 115:4 (2024),  483–490
  3. Generalized Bochner technique and its application to the study of projective and conformal mappings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 223 (2023),  112–122
  4. Codazzi and Killing Tensors on a Complete Riemannian Manifold

    Mat. Zametki, 109:6 (2021),  901–911
  5. On symmetric Killing tensors and Codazzi tensors of ranks $p\geq 2$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 179 (2020),  94–120
  6. From harmonic mappings to Ricci flows due to the Bochner technique

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 169 (2019),  75–87
  7. On the Lichnerovicz Laplacian

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 169 (2019),  67–74
  8. Harmonic and conformally Killing forms on complete Riemannian manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3,  51–57
  9. Harmonic Transforms of Complete Riemannian Manifolds

    Mat. Zametki, 100:3 (2016),  441–449
  10. Liouville-type theorems for the theories of Riemannian almost product structures and submersions

    Sib. J. Pure and Appl. Math., 16:4 (2016),  3–12
  11. Conformal Killing forms on totally umbilical submanifolds

    Contemporary Mathematics and Its Applications, 96 (2015),  3–17
  12. Theorems of Liuville types in theory mappings of the complete Riemannian manifolds

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:3 (2015),  3–10
  13. Theorems of existence and non-existence of conformal Killing forms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 10,  54–61
  14. Tachibana operator

    University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 4,  82–92
  15. Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  97–101
  16. A vector field on a Lorentz manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3,  81–83


© Steklov Math. Inst. of RAS, 2026