RUS  ENG
Full version
PEOPLE

Zelenko L B

Publications in Math-Net.Ru

  1. Locally selfadjoint extensions of nonlinear operators, and Lagrangian manifolds. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3,  16–25
  2. Locally selfadjoint extensions of nonlinear operators, and Lagrangian manifolds. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 2,  22–31
  3. Extensions of a class of nonlinear operators in Hilbert space. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 3,  9–19
  4. Extensions of a class of nonlinear operators in Hilbert space. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 2,  28–37
  5. On the Floquet representation of exponentially increasing solutions of elliptic equations with periodic coefficients

    Dokl. Akad. Nauk SSSR, 239:6 (1978),  1283–1284
  6. The spectrum of a Schrödinger equation with a complex pseudoperiodic potential. II

    Differ. Uravn., 12:8 (1976),  1417–1426
  7. The spectrum of a Schrödinger equation with a complex pseudoperiodic potential. I

    Differ. Uravn., 12:5 (1976),  806–814
  8. Asymptotic distribution of eigenvalues in a lacuna of the continuous spectrum of the perturbed Hill operator

    Mat. Zametki, 20:3 (1976),  341–350
  9. Friedrichs extension of some nonlinear operators

    Funktsional. Anal. i Prilozhen., 7:4 (1973),  83–84
  10. The limiting spectrum of a non-self-conjugate second-order differential operator with slowly varying coefficients

    Mat. Zametki, 13:1 (1973),  135–146
  11. The limit spectrum of systems of first order differential equations with slowly changing coefficients

    Differ. Uravn., 7:11 (1971),  1982–1991
  12. Deficiency index and spectrum of a selfadjoint system of first-order differential equations

    Dokl. Akad. Nauk SSSR, 181:2 (1968),  278–281
  13. Conditions for the semiboundedness and discreteness of the spectrum of the Sturm–Liouville operator on the semi-axis

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 9,  31–40
  14. Discreteness conditions for the spectrum of the Sturm-Liouville operator in a space of vector functions

    Mat. Zametki, 1:5 (1967),  583–588

  15. Letter to the editors

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 3,  122


© Steklov Math. Inst. of RAS, 2026