RUS  ENG
Full version
PEOPLE

Miheev S A

Publications in Math-Net.Ru

  1. Gradient descent method in computation of instantaneous cardiac rhythm multifractal model parameters

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 1,  55–67
  2. Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized Newton's method

    Mat. Model., 29:12 (2017),  147–156
  3. Catastrophes instantaneous heart rate in the model multifractal dynamics and based on the data of Holter monitoring

    Mat. Model., 29:5 (2017),  73–84
  4. Bifurcation catastrophes of an instant cardiac rhythm in multifractal dynamics model

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2016, no. 1,  63–73
  5. New Ways To Study Mathematical Model Of Rearrangements And Catastrophes

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2013, no. 1,  55–61
  6. Formation of ring-shaped bubbles in the mathematical model of the rotating Newtonian polytrops

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 17,  73–84
  7. Configurations of rotating magnetic Newtonian polytropics with small index

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 16,  75–86
  8. Mathematical model of equilibrium rotating newtonian configurations of the degenerate fermi-gas

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 15,  107–114
  9. Mathematical model of equilibrium rotating newtonian configurations of the degenerate fermi-gas

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 13,  15–22
  10. A gravitating rapidly rotating superdense configuration with realistic state equations

    Mat. Model., 18:3 (2006),  103–119


© Steklov Math. Inst. of RAS, 2026