RUS  ENG
Full version
PEOPLE

Gulisashvili A B

Publications in Math-Net.Ru

  1. Mean $\epsilon$-dimension of classes of functions whose spectra are contained in a given set

    Dokl. Akad. Nauk SSSR, 317:4 (1991),  803–807
  2. Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space

    Zap. Nauchn. Sem. LOMI, 157 (1987),  137–145
  3. Traces of differentiable functions on subsets of Euclidean space

    Zap. Nauchn. Sem. LOMI, 149 (1986),  52–66
  4. Multipliers in Besov spaces and traces of functions on subspaces of Euclidean space

    Dokl. Akad. Nauk SSSR, 281:4 (1985),  777–781
  5. Multipliers on Besov spaces

    Zap. Nauchn. Sem. LOMI, 135 (1984),  36–50
  6. Estimates for the Pettis integral in interpolation spaces, and a generalization of some imbedding theorems

    Dokl. Akad. Nauk SSSR, 263:4 (1982),  793–798
  7. Rearrangements, arrangements of sings and convergence of sequences of operators

    Zap. Nauchn. Sem. LOMI, 107 (1982),  46–70
  8. On singularities of summable functions

    Zap. Nauchn. Sem. LOMI, 113 (1981),  76–96
  9. On the behavior of the Fourier coefficients of equimeasurable functions

    Dokl. Akad. Nauk SSSR, 250:4 (1980),  787–790
  10. Behavior of the Fourier transform in function spaces

    Funktsional. Anal. i Prilozhen., 14:4 (1980),  71–72
  11. Fourier coefficients of summable functions

    Mat. Sb. (N.S.), 102(144):3 (1977),  362–371
  12. An interpolation theorem of weak type and the behavior of the Fourier transform of a function having prescribed Lebesgue sets

    Dokl. Akad. Nauk SSSR, 218:6 (1974),  1268–1271
  13. Fourier transforms of monotonic functions and the distribution function

    Dokl. Akad. Nauk SSSR, 196:6 (1971),  1259–1262
  14. Distribution functions and trigonometric series with monotonically decreasing coefficients

    Mat. Zametki, 10:1 (1971),  3–10

  15. David Ruelle. “Chaotic Evolution and Strange Attractois. The Statistical Analysis of Time. Series for Deterministic Nonlinear Systems. Notes prepared by Stefano Isola from the "Lezioni Lincee” (Rome, May 1987) // Cambridge: University Press, 1989. 96 p.

    Algebra i Analiz, 3:4 (1991),  227–240
  16. Ê. J. Falconer. The Geometry of Fractal Sets // Cambridge tracts in mathematics. Vol. 85. Cambridge: University Press, 1985. 162 p.

    Algebra i Analiz, 2:2 (1990),  249–259


© Steklov Math. Inst. of RAS, 2026