|
|
Publications in Math-Net.Ru
-
Mean $\epsilon$-dimension of classes of functions whose spectra
are contained in a given set
Dokl. Akad. Nauk SSSR, 317:4 (1991), 803–807
-
Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space
Zap. Nauchn. Sem. LOMI, 157 (1987), 137–145
-
Traces of differentiable functions on subsets of Euclidean space
Zap. Nauchn. Sem. LOMI, 149 (1986), 52–66
-
Multipliers in Besov spaces and traces of functions on subspaces
of Euclidean space
Dokl. Akad. Nauk SSSR, 281:4 (1985), 777–781
-
Multipliers on Besov spaces
Zap. Nauchn. Sem. LOMI, 135 (1984), 36–50
-
Estimates for the Pettis integral in interpolation spaces, and a generalization of some imbedding theorems
Dokl. Akad. Nauk SSSR, 263:4 (1982), 793–798
-
Rearrangements, arrangements of sings and convergence of sequences of operators
Zap. Nauchn. Sem. LOMI, 107 (1982), 46–70
-
On singularities of summable functions
Zap. Nauchn. Sem. LOMI, 113 (1981), 76–96
-
On the behavior of the Fourier coefficients of equimeasurable functions
Dokl. Akad. Nauk SSSR, 250:4 (1980), 787–790
-
Behavior of the Fourier transform in function spaces
Funktsional. Anal. i Prilozhen., 14:4 (1980), 71–72
-
Fourier coefficients of summable functions
Mat. Sb. (N.S.), 102(144):3 (1977), 362–371
-
An interpolation theorem of weak type and the behavior of the Fourier transform of a function having prescribed Lebesgue sets
Dokl. Akad. Nauk SSSR, 218:6 (1974), 1268–1271
-
Fourier transforms of monotonic functions and the distribution function
Dokl. Akad. Nauk SSSR, 196:6 (1971), 1259–1262
-
Distribution functions and trigonometric series with monotonically decreasing coefficients
Mat. Zametki, 10:1 (1971), 3–10
-
David Ruelle. “Chaotic Evolution and Strange Attractois. The Statistical Analysis of Time.
Series for Deterministic Nonlinear Systems. Notes prepared by Stefano Isola from the
"Lezioni Lincee” (Rome, May 1987) // Cambridge: University Press, 1989. 96 p.
Algebra i Analiz, 3:4 (1991), 227–240
-
Ê. J. Falconer. The Geometry of Fractal Sets // Cambridge tracts in mathematics. Vol. 85.
Cambridge: University Press, 1985. 162 p.
Algebra i Analiz, 2:2 (1990), 249–259
© , 2026