RUS  ENG
Full version
PEOPLE

Lazarev Nyurgun Petrovich

Publications in Math-Net.Ru

  1. Equilibrium problem for a Timoshenko plate with a cohesion of the edges of a defect on the front surface

    Chelyab. Fiz.-Mat. Zh., 10:3 (2025),  417–430
  2. Problems for plates with rigid inclusions contacting with flat and pointwise obstacles on the front surfaces

    Mathematical notes of NEFU, 32:3 (2025),  15–27
  3. Optimal control of transverse crack length in the equilibrium problem of Timoshenko plate with two intersecting cracks

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:2 (2025),  247–260
  4. Equilibrium problem for a Timoshenko plate contacting by its lateral surface along a strip of a given width

    Chelyab. Fiz.-Mat. Zh., 9:4 (2024),  596–608
  5. Equilibrium problem for a Kirchhoff–Love plate contacting by the side edge and the bottom boundary

    J. Sib. Fed. Univ. Math. Phys., 17:3 (2024),  355–364
  6. Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  729–740
  7. Equilibrium problem for a Kirchhoff–Love plate contacting with an inclined and lateral obstacles

    Mathematical notes of NEFU, 31:2 (2024),  15–31
  8. Equilibrium problem for a Timoshenko plate contacting by the side and face surfaces

    Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  528–541
  9. Optimal location problem for composite bodies with separate and joined rigid inclusions

    Bulletin of Irkutsk State University. Series Mathematics, 43 (2023),  19–30
  10. Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  88–95
  11. Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023),  51–60
  12. Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths

    Prikl. Mekh. Tekh. Fiz., 64:5 (2023),  205–215
  13. Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body

    Mathematical notes of NEFU, 30:3 (2023),  38–57
  14. Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions

    Chelyab. Fiz.-Mat. Zh., 7:4 (2022),  412–423
  15. Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  627–638
  16. Maximizing gross product for the macroeconomic system with consumption proportional to labor resources

    Sib. Zh. Ind. Mat., 25:2 (2022),  46–57
  17. Solvability of an equilibrium problem for a thermoelastic Kirchhoff-Love plate with an oblique crack

    Mathematical notes of NEFU, 29:2 (2022),  31–42
  18. Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate

    Chelyab. Fiz.-Mat. Zh., 6:3 (2021),  278–288
  19. On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack

    J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  28–41
  20. Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem

    Sib. Zh. Ind. Mat., 24:1 (2021),  103–119
  21. Optimal control of the crack angle in the equilibrium problem for a Timoshenko plate with elastic inclusion

    Mathematical notes of NEFU, 28:4 (2021),  58–70
  22. Optimal location of a rigid inclusion for an equilibrium problem describing Kirchhoff–Love plate with nonpenetration conditions for known configurations of plate edges

    Mathematical notes of NEFU, 28:2 (2021),  16–33
  23. Equilibrium problem for an thermoelastic Kirchhoff–Love plate with a nonpenetration condition for known configurations of crack edges

    Sib. Èlektron. Mat. Izv., 17 (2020),  2096–2104
  24. Equilibrium problem for a Timoshenko plate with a geometrically nonlinear condition of nonpenetration for a vertical crack

    Sib. Zh. Ind. Mat., 23:3 (2020),  65–76
  25. Equilibrium problems for Kirchhoff–Love plates with nonpenetration conditions for known configurations of crack edges

    Mathematical notes of NEFU, 27:3 (2020),  52–65
  26. Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges

    J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  674–686
  27. Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack

    Sib. Zh. Ind. Mat., 22:1 (2019),  53–62
  28. Differentiation of the energy functionals for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges

    Mathematical notes of NEFU, 26:4 (2019),  51–62
  29. Optimal radius of a rigid cylindrical inclusion in nonhomogeneous plates with a crack

    Mathematical notes of NEFU, 26:1 (2019),  46–58
  30. Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack

    Sib. Èlektron. Mat. Izv., 15 (2018),  1485–1497
  31. Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks

    Mathematical notes of NEFU, 25:3 (2018),  43–53
  32. On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack

    Mathematical notes of NEFU, 25:1 (2018),  38–49
  33. The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion

    Sib. Zh. Ind. Mat., 20:2 (2017),  59–70
  34. An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body

    Mathematical notes of NEFU, 24:4 (2017),  37–51
  35. Junction problem for Euler–Bernoulli and Timoshenko elastic beams

    Sib. Èlektron. Mat. Izv., 13 (2016),  26–37
  36. Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack

    Mathematical notes of NEFU, 23:2 (2016),  51–64
  37. Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack

    Sib. J. Pure and Appl. Math., 16:1 (2016),  90–105
  38. Energy functional derivative of the length of a curvilinear oblique cut in the problem of equilibrium of a Timoshenko plate

    Prikl. Mekh. Tekh. Fiz., 56:6 (2015),  119–131
  39. Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack

    Sib. Èlektron. Mat. Izv., 12 (2015),  300–308
  40. The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1,  32–45
  41. An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  53–62
  42. Equilibrium problem for a Timoshenko plate with an oblique crack

    Prikl. Mekh. Tekh. Fiz., 54:4 (2013),  171–181
  43. Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity

    Prikl. Mekh. Tekh. Fiz., 54:2 (2013),  179–189
  44. The Griffith formula for a Timoshenko-type plate with a curvilinear track

    Sib. Zh. Ind. Mat., 16:2 (2013),  98–108
  45. Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  91–104
  46. Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 6(107),  100–115
  47. Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack

    Prikl. Mekh. Tekh. Fiz., 53:2 (2012),  175–185
  48. The problem of equilibrium of a shallow Timoshenko-type shell containing a through-thickness crack

    Sib. Zh. Ind. Mat., 15:3 (2012),  58–69
  49. An equilibrium problem for a Timoshenko plate with a through crack

    Sib. Zh. Ind. Mat., 14:4 (2011),  32–43
  50. An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack

    Sib. Zh. Vychisl. Mat., 14:4 (2011),  397–408
  51. Extreme Crack Shapes in a Plate Timoshenko Model

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011),  49–62
  52. Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011),  77–88
  53. The method of smooth domains in problems of the two-dimensional theory of elasticity for a domain with a nonsmooth cut

    Sib. Zh. Ind. Mat., 6:3 (2003),  103–113
  54. Differentiation of the energy functional for the problem of the equilibrium of a body containing a crack, with Signorini boundary conditions

    Sib. Zh. Ind. Mat., 5:2 (2002),  139–147
  55. Diffusion in a lattice with static disorder

    TMF, 89:3 (1991),  465–472


© Steklov Math. Inst. of RAS, 2026