RUS  ENG
Full version
PEOPLE

Livshitz E A

Publications in Math-Net.Ru

  1. Sharp linear operators

    Funktsional. Anal. i Prilozhen., 18:3 (1984),  82–83
  2. A parallel variety of the Zeidel'-Nekrasov method for solution of sets of algebraical equations

    Avtomat. i Telemekh., 1981, no. 9,  178–185
  3. Vector hysteresis nonlinearities of the von Mises–Tresca type

    Dokl. Akad. Nauk SSSR, 257:3 (1981),  581–584
  4. Positively reproducing and positively normal operators

    Funktsional. Anal. i Prilozhen., 6:1 (1972),  19–23
  5. An oscillator on an elasto-plastic element

    Dokl. Akad. Nauk SSSR, 190:2 (1970),  266–268
  6. An operator-hysterant

    Dokl. Akad. Nauk SSSR, 190:1 (1970),  34–37
  7. Ideally convex sets

    Funktsional. Anal. i Prilozhen., 4:4 (1970),  76–77
  8. On the theory of partially ordered Banach spaces

    Funktsional. Anal. i Prilozhen., 3:1 (1969),  91–92
  9. A fixed point theorem for generalized condensing operators

    Dokl. Akad. Nauk SSSR, 183:2 (1968),  278–279
  10. Relativity principles for differential equations with unbounded operators in A Banach space

    Funktsional. Anal. i Prilozhen., 2:4 (1968),  58–62
  11. On the convergence of sequences of positive operators in linear topological spaces

    Uspekhi Mat. Nauk, 23:2(140) (1968),  213–214
  12. Duality principles for boundary value problems

    Dokl. Akad. Nauk SSSR, 176:5 (1967),  999–1001
  13. Points of smoothness of a cone and convergence of positive functionals and operators

    Tr. Mosk. Mat. Obs., 15 (1966),  55–69
  14. On duality principles for the problem of periodic solutions of higher order differential equations

    Dokl. Akad. Nauk SSSR, 165:2 (1965),  277–280
  15. Convergence of positive functional and operators

    Dokl. Akad. Nauk SSSR, 162:2 (1965),  258–261


© Steklov Math. Inst. of RAS, 2026