RUS  ENG
Full version
PEOPLE

Khmel Tat'yana Alekseevna

Publications in Math-Net.Ru

  1. Investigation of the interaction of heterogeneous detonation in nonstoichiometric mixtures of aluminum nanoparticles with a cloud of inert particles

    Chelyab. Fiz.-Mat. Zh., 10:3 (2025),  562–568
  2. Control of hydrogen-air mixture detonation processes by adding microdispersed aluminum particles

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:14 (2025),  11–14
  3. Validation of the model of hybrid detonation of hydrogen-air mixtures with aluminium particles

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  177–186
  4. Simulation of cellular detonation flow in a hydrogen – oxygen – argon mixture with aluminum particles

    Fizika Goreniya i Vzryva, 60:3 (2024),  104–116
  5. The effect of adding nanodispersed aluminum particles on characteristics of detonation of hydrogen-air mixtures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:8 (2024),  37–39
  6. Structure and propagation of Chapman — Jouget waves in a hydrogen-oxygen mixture with aluminium particles

    Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  580–593
  7. Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion

    Chelyab. Fiz.-Mat. Zh., 8:3 (2023),  371–386
  8. Interaction of cellular detonation in inhomogeneous (in terms of concentrations) gas suspensions of aluminum particles with clouds of inert particles

    Fizika Goreniya i Vzryva, 59:3 (2023),  61–73
  9. Modeling of cellular detonation in gas suspensions of submicron aluminum particles with different distributions of concentration

    Fizika Goreniya i Vzryva, 58:3 (2022),  3–18
  10. Modeling of dynamic processes in slightly dusty and saturated gas suspensions (review)

    Fizika Goreniya i Vzryva, 57:3 (2021),  3–17
  11. Modeling of cellular detonation in gas suspensions of two fractions of aluminum nanoparticles

    Fizika Goreniya i Vzryva, 56:2 (2020),  73–82
  12. Modeling of cellular detonation in gas suspensions of submicron and nano-sized aluminum particles

    Fizika Goreniya i Vzryva, 55:5 (2019),  73–82
  13. Problems of closing models that describe detonation of gas suspensions of ultrafine aluminum particles (review)

    Fizika Goreniya i Vzryva, 55:1 (2019),  3–20
  14. About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions

    Mat. Model., 31:3 (2019),  3–22
  15. Modeling of plane detonation waves in a gas suspension of nano-sized aluminum particles

    Fizika Goreniya i Vzryva, 54:2 (2018),  71–81
  16. Exit of a heterogeneous detonation wave into a channel with linear expansion. II. Critical propagation condition

    Fizika Goreniya i Vzryva, 54:1 (2018),  81–91
  17. Numerical study of dispersion of a rough dense layer of particles under the action of an expanding shock wave

    Fizika Goreniya i Vzryva, 53:6 (2017),  87–96
  18. Outgoing of a heterogeneous detonation wave into a channel with linear expansion. I. Propagation modes

    Fizika Goreniya i Vzryva, 53:5 (2017),  104–114
  19. Role of particle collisions in shock wave interaction with a dense spherical layer of a gas suspension

    Fizika Goreniya i Vzryva, 53:4 (2017),  84–93
  20. Effect of collision dynamics of particles on the processes of shock wave dispersion

    Fizika Goreniya i Vzryva, 52:2 (2016),  93–105
  21. Axisymmetric expanding heterogeneous detonation in gas suspensions of aluminum particles

    Fizika Goreniya i Vzryva, 52:1 (2016),  84–95
  22. Modeling of propagation of shock and detonation waves in dusty media with allowance for particle collisions

    Fizika Goreniya i Vzryva, 50:5 (2014),  53–62
  23. Description of dynamic processes in two-phase colliding media with the use of molecular-kinetic approaches

    Fizika Goreniya i Vzryva, 50:2 (2014),  81–93
  24. Modeling of Pulsating Flow in Blood Capillaries

    Mat. Biolog. Bioinform., 8:1 (2013),  1–11
  25. Characteristics and criteria of ignition of suspensions of aluminum particles in detonation processes

    Fizika Goreniya i Vzryva, 48:2 (2012),  76–88
  26. Specific features of cellular detonation in polydisperse suspensions of aluminum particles in a gas

    Fizika Goreniya i Vzryva, 47:5 (2011),  85–94
  27. Propagation of detonation waves in gas suspensions in channels with a backward-facing step

    Fizika Goreniya i Vzryva, 47:1 (2011),  80–91
  28. Modeling of blood microcirculation processes with allowance for pulse pressure oscillations

    Prikl. Mekh. Tekh. Fiz., 52:2 (2011),  92–102
  29. Diffraction of a plane detonation wave on a back-facing step in a gas suspension

    Fizika Goreniya i Vzryva, 45:5 (2009),  95–107
  30. Mathematical modeling of heterogeneous detonation in gas suspensions of aluminum and coal-dust particles

    Fizika Goreniya i Vzryva, 45:4 (2009),  166–177
  31. Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles

    Fizika Goreniya i Vzryva, 44:3 (2008),  109–120
  32. Structure and initiation of plane detonation waves in a bidisperse gas suspension of aluminum particles

    Fizika Goreniya i Vzryva, 44:2 (2008),  46–55
  33. Numerical study of shock-wave diffraction in variable-section channels in gas suspensions

    Fizika Goreniya i Vzryva, 44:1 (2008),  85–95
  34. Reflection of a shock wave in a dusty cloud

    Fizika Goreniya i Vzryva, 43:1 (2007),  121–131
  35. Some features of the flow around rapidly rotating bodies made of cellular-porous materials

    Prikl. Mekh. Tekh. Fiz., 48:1 (2007),  86–96
  36. Theoretical and numerical study of detonation processes in gas suspensions with aluminum particles

    Fizika Goreniya i Vzryva, 42:6 (2006),  126–136
  37. Numerical technologies for investigations of heterogeneous detonations of gas particle suspensions

    Mat. Model., 18:8 (2006),  49–63
  38. Centrifugal convection in rapid rotation of bodies made of cellular-porous materials

    Prikl. Mekh. Tekh. Fiz., 47:1 (2006),  46–57
  39. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen

    Fizika Goreniya i Vzryva, 41:4 (2005),  84–98
  40. Mathematical simulation of heterogeneous detonation of coal dust in oxygen with allowance for the ignition stage

    Fizika Goreniya i Vzryva, 41:1 (2005),  89–99
  41. Mathematical modeling of flows inside rotating bodies made of cellular-porous materials

    Prikl. Mekh. Tekh. Fiz., 46:6 (2005),  78–85
  42. Numerical simulation of two-dimensional detonation flows in reactive particle gas suspensions

    Mat. Model., 16:6 (2004),  73–77
  43. Mathematical simulation of detonation processes in a coal-particle suspension

    Fizika Goreniya i Vzryva, 38:6 (2002),  103–112
  44. Interaction of a shock wave with a cloud of aluminum particles in a channel

    Fizika Goreniya i Vzryva, 38:2 (2002),  89–98
  45. Numerical simulation of detonation initiation with a shock wave entering a cloud of aluminum particles

    Fizika Goreniya i Vzryva, 38:1 (2002),  114–122
  46. Numerical simulation of shock-wave initiation of heterogeneous detonation in aerosuspensions of aluminum particles

    Fizika Goreniya i Vzryva, 35:3 (1999),  81–88
  47. Determination of nonideal self-sustained detonation regimes of aluminum particles in air

    Fizika Goreniya i Vzryva, 34:5 (1998),  95–102
  48. Mathematical modeling of detonation of an aluminum dust in oxygen with allowance for velocity nonequilibrium of the particles

    Fizika Goreniya i Vzryva, 33:6 (1997),  80–91
  49. Interaction of detonation and rarefaction waves in aluminum particles dispersed in oxygen

    Fizika Goreniya i Vzryva, 33:2 (1997),  102–110
  50. Types and stability of detonation flows of aluminum particles in oxygen

    Fizika Goreniya i Vzryva, 32:2 (1996),  74–85
  51. Types of detonation flows of an aluminum-oxygen aerosuspension

    Dokl. Akad. Nauk, 342:2 (1995),  185–188
  52. Diffraction of a plane electromagnetic wave on a poorly conducting, cellular structure in a dielectric layer

    Prikl. Mekh. Tekh. Fiz., 36:6 (1995),  3–10


© Steklov Math. Inst. of RAS, 2026