RUS  ENG
Full version
PEOPLE

Treil Sergei Raimondovich

Publications in Math-Net.Ru

  1. Unbounded integral Hankel operators

    Funktsional. Anal. i Prilozhen., 59:3 (2025),  96–126
  2. Preservation of absolutely continuous spectrum for contractive operators

    Algebra i Analiz, 34:3 (2022),  232–251
  3. A remark on the reproducing kernel thesis for Hankel operators

    Algebra i Analiz, 26:3 (2014),  180–189
  4. Approximation by analytic operator functions. Factorizations and very badly approximable functions

    Algebra i Analiz, 17:3 (2005),  160–183
  5. The transfer method in estimates for vector Hankel operators

    Algebra i Analiz, 12:6 (2000),  178–193
  6. The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis

    Algebra i Analiz, 8:5 (1996),  32–162
  7. Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator

    Algebra i Analiz, 7:6 (1995),  205–226
  8. An inverse spectral problem for the modulus of the Hankel operator, and balanced realizations

    Algebra i Analiz, 2:2 (1990),  158–182
  9. Hankel operators, embedding theorems and bases of co-invariant subspaces of the multiple shift operator

    Algebra i Analiz, 1:6 (1989),  200–234
  10. The inverse spectral problem for the modulus of a Hankel operator

    Algebra i Analiz, 1:4 (1989),  54–66
  11. Angles between co-invariant subspaces, and the operator corona problem. The Szökefalvi-Nagy problem

    Dokl. Akad. Nauk SSSR, 302:5 (1988),  1063–1068
  12. Invertibility of a Toeplitz operator does not imply its invertibility by the projection method

    Dokl. Akad. Nauk SSSR, 292:3 (1987),  563–567
  13. The resolvent of a Toeplitz operator may have arbitrary growth

    Zap. Nauchn. Sem. LOMI, 157 (1987),  175–177
  14. A spatially compact system of eigenvectors forms a Riesz basis if it is uniformly minimal

    Dokl. Akad. Nauk SSSR, 288:2 (1986),  308–312
  15. Vector variant of the Adamyan–Arov–Krein theorem

    Funktsional. Anal. i Prilozhen., 20:1 (1986),  85–86
  16. Extreme points of the unit ball of the operator Hardy space $H^\infty(E\to E_*)$

    Zap. Nauchn. Sem. LOMI, 149 (1986),  160–164
  17. Imbedding theorems for invariant subspaces of backward shift operator.

    Zap. Nauchn. Sem. LOMI, 149 (1986),  38–51
  18. Moduli of Hankel operators and a problem of V.  V. Peller and S. V. Khrushchev

    Dokl. Akad. Nauk SSSR, 283:5 (1985),  1095–1099
  19. The Adamyan–Arov–Krein theorem: Vectorial variant

    Zap. Nauchn. Sem. LOMI, 141 (1985),  56–71
  20. Moduli of Hankel operators and a problem of V. V. Peller and S. V. Khrushchev

    Zap. Nauchn. Sem. LOMI, 141 (1985),  39–55
  21. An operator approach to weighted norm inequalities for singular inegrals

    Zap. Nauchn. Sem. LOMI, 135 (1984),  150–174
  22. A geometric approach to the weighted estimates of hilbert transforms

    Funktsional. Anal. i Prilozhen., 17:4 (1983),  90–91

  23. A. Böttcher, B. Silbermann. Analysis of Toeplitz Operators. Berlin: Akademie, 1989

    Algebra i Analiz, 2:5 (1990),  220–235


© Steklov Math. Inst. of RAS, 2026