|
|
Publications in Math-Net.Ru
-
On the spectrum of the differential operators of odd order with $\mathcal{PT}$-symmetric coefficients
Funktsional. Anal. i Prilozhen., 59:2 (2025), 17–24
-
On the Spectrality of Differential Operators with Periodic Coefficients
Mat. Zametki, 118:4 (2025), 714–725
-
On the differential operators of odd order with $\mathrm{PT}$-symmetric periodic matrix coefficients
Funktsional. Anal. i Prilozhen., 58:4 (2024), 142–147
-
Spectral Expansion for Nonself-Adjoint Differential Operators
with Periodic Matrix Coefficients
Mat. Zametki, 112:6 (2022), 1025–1043
-
On the finite-zone periodic PT-symmetric potentials
Mosc. Math. J., 19:4 (2019), 807–816
-
Asymptotically Spectral Periodic Differential Operators
Mat. Zametki, 104:3 (2018), 364–376
-
On Sharp Asymptotic Formulas for the Sturm–Liouville Operator with a Matrix Potential
Mat. Zametki, 100:2 (2016), 291–297
-
On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions
Mosc. Math. J., 15:3 (2015), 511–526
-
On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems
Mat. Zametki, 85:5 (2009), 671–686
-
Non-Self-Adjoint Sturm–Liouville Operators with Matrix Potentials
Mat. Zametki, 81:4 (2007), 496–506
-
Spectral analysis of differential operators with periodic matrix coefficients
Differ. Uravn., 25:3 (1989), 400–409
-
Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe–Sommerfeld conjecture
Funktsional. Anal. i Prilozhen., 21:2 (1987), 1–15
-
Spectral expansion of nonselfadjoint differential operators with periodic coefficients
Differ. Uravn., 22:12 (1986), 2052–2059
-
Structure of the spectrum of the periodic Schrödinger operator on the Euclidean torus
Funktsional. Anal. i Prilozhen., 19:3 (1985), 86–87
-
The spectrum of the Schrödinger operator with periodic potential
Dokl. Akad. Nauk SSSR, 268:6 (1983), 1289–1292
-
The spectrum and spectral singularities of differential operators with periodic complex-valued coefficients
Differ. Uravn., 19:8 (1983), 1316–1324
-
Nonselfadjoint differential operators in the space of vector-valued functions with periodic coefficients
Dokl. Akad. Nauk SSSR, 258:1 (1981), 26–30
-
The one-dimensional Schrödinger operator with a periodic complex-valued potential
Dokl. Akad. Nauk SSSR, 250:6 (1980), 1292–1296
-
Поправки к статье “Несамосопряженные дифференциальные операторы в пространстве вектор-функции с периодическими коэффициентами” (ДАН, т. 258, № 1, 1981 г.)
Dokl. Akad. Nauk SSSR, 265:2 (1982), 264
© , 2026