RUS  ENG
Full version
PEOPLE

Mikhailov Aleksandr Sergeevich

Publications in Math-Net.Ru

  1. On the Weyl function for complex Jacobi matrices

    Zap. Nauchn. Sem. POMI, 541 (2025),  131–144
  2. On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems

    Sib. Zh. Ind. Mat., 27:3 (2024),  111–125
  3. Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions

    Zap. Nauchn. Sem. POMI, 536 (2024),  156–177
  4. On the dynamic inverse problem for the first-order transport system

    Zap. Nauchn. Sem. POMI, 533 (2024),  153–169
  5. Dynamic inverse problem for complex Jacobi matrices

    Zap. Nauchn. Sem. POMI, 521 (2023),  136–153
  6. On the construction of de Branges spaces for dynamical systems associated with finite Jacobi matrices

    Nanosystems: Physics, Chemistry, Mathematics, 13:1 (2022),  24–29
  7. Construction of solutions of Toda lattices by the classical moment problem

    Zap. Nauchn. Sem. POMI, 506 (2021),  113–129
  8. Finite Toda lattice and classical moment problem

    Nanosystems: Physics, Chemistry, Mathematics, 11:1 (2020),  25–29
  9. Dynamic inverse problem for the one-dimensional system with memory

    Zap. Nauchn. Sem. POMI, 493 (2020),  259–268
  10. Inverse dynamic problem for the wave equation with periodic boundary conditions

    Nanosystems: Physics, Chemistry, Mathematics, 10:2 (2019),  115–123
  11. Forward and inverse dynamic problems for finite Krein–Stieltjes string. Approximation of constant density by point masses

    Zap. Nauchn. Sem. POMI, 483 (2019),  128–141
  12. Inverse dynamic problems for canonical systems and de Branges spaces

    Nanosystems: Physics, Chemistry, Mathematics, 9:2 (2018),  215–224
  13. One dimensional inverse problem in photoacoustic. Numerical testing

    Zap. Nauchn. Sem. POMI, 471 (2018),  140–149
  14. On an inverse dynamic problem for the wave equation with a potential on a real line

    Zap. Nauchn. Sem. POMI, 461 (2017),  212–231
  15. Dynamical inverse problem for the discrete Schrödinger operator

    Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016),  842–853
  16. Connection of the different types of inverse data for the one-dimensional Schrödinger operator on the half-line

    Zap. Nauchn. Sem. POMI, 451 (2016),  134–155
  17. On some applications of the boundary control method to spectral estimation and inverse problems

    Nanosystems: Physics, Chemistry, Mathematics, 6:1 (2015),  63–78
  18. Equations of the Boundary Control method for the inverse source problem

    Zap. Nauchn. Sem. POMI, 409 (2012),  121–129
  19. Estimates of deviations from exact solution of the Stokes problem in the vorticity-velocity-pressure formulation

    Zap. Nauchn. Sem. POMI, 397 (2011),  73–88
  20. On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary

    Zap. Nauchn. Sem. POMI, 385 (2010),  83–97
  21. Local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary

    Zap. Nauchn. Sem. POMI, 370 (2009),  73–93
  22. $L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary

    Zap. Nauchn. Sem. POMI, 336 (2006),  133–152
  23. Kinematic approach to the description of autowave processes in active media

    TMF, 74:3 (1988),  440–447

  24. Mikhail Mikhailovich Popov

    Zap. Nauchn. Sem. POMI, 506 (2021),  7–8


© Steklov Math. Inst. of RAS, 2026