RUS  ENG
Full version
PEOPLE

Leiko Svyatoslav Grigor'evich

Publications in Math-Net.Ru

  1. Isoperimetric problems for rotational functionals of the first and second orders in (pseudo)Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 5,  49–55
  2. Planar connections onto manifold with commutative algebra of two almost product structures

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:1 (2005),  121–131
  3. On the geodesic flow on a spherical tangent bundle of a two-dimensional manifold with the Sasaki metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3,  33–38
  4. Rotational-conformal transformations in the Lobachevskii plane

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 9,  79–81
  5. Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7,  3–5
  6. $p$-geodesic transformations and their groups in tangent bundles, which are induced by concircular transformations of the base manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 6,  35–45
  7. Rotary transformation of surfaces

    Mat. Fiz. Anal. Geom., 5:3/4 (1998),  203–211
  8. Isoperimetric extremals of a turn on surfaces in the Euclidean space $E^3$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 6,  25–32
  9. Infinitesimal turning transformations and deformations of surfaces in Euclidean space

    Dokl. Akad. Nauk, 344:2 (1995),  162–164
  10. $p$-geodesic sections of the tangent bundle

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 1,  32–42
  11. Extremals of curve-turn functionals of a pseudo-Riemannian space and the trajectories of spinning particles in gravitational fields

    Dokl. Akad. Nauk, 325:4 (1992),  659–663
  12. $p$-geodesic transformations and their groups in tangent bundles, which are induced by geodesic transformations of the base manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2,  62–71
  13. Variational problems for rotation functionals, and spin-mappings of pseudo-Riemannian spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 10,  9–17
  14. Rotary diffeomorphisms on Euclidean spaces

    Mat. Zametki, 47:3 (1990),  52–57
  15. Linear $P$-geodesic diffeomorphisms of manifolds with affine connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 5,  80–83
  16. Linear $p$-geodesic diffeomorphisms of tangent bundles of higher orders and higher degrees

    Tr. Geom. Semin., 14 (1982),  34–46


© Steklov Math. Inst. of RAS, 2026