RUS  ENG
Full version
PEOPLE

Vlasov Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Construction of a harmonic mapping of one class domains with a curvilinear boundary by using the multipole method

    Zh. Vychisl. Mat. Mat. Fiz., 65:12 (2025),  2045–2053
  2. Explicit form of asymptoic coefficients at the entering corner for conformal mapping of the $L$-shaped domain

    Zh. Vychisl. Mat. Mat. Fiz., 65:12 (2025),  2031–2044
  3. Multipole method for solving the Zaremba problem in complex domains with application to construction of conformal mapping

    Zh. Vychisl. Mat. Mat. Fiz., 65:11 (2025),  1779–1788
  4. Analytical-numerical method for some elliptic boundary value problems with discontinuous coefficient in domains with polyhedral corners

    Mat. Zametki, 116:6 (2024),  1204–1217
  5. Multipole method for some mixed boundary value problems and its application to conformal mapping

    Zh. Vychisl. Mat. Mat. Fiz., 64:11 (2024),  2007–2018
  6. Analysis of defects and harmonic grid generation in domains with angles and cutouts

    Zh. Vychisl. Mat. Mat. Fiz., 63:12 (2023),  2096–2129
  7. The Method of Harmonic Mapping of Regions with a Notch

    Mat. Zametki, 112:6 (2022),  831–844
  8. Conformal mapping of an $L$-shaped domain in analytical form

    Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022),  1943–1980
  9. Asymptotics of the Riemann–Hilbert Problem for the Somov Model of Magnetic Reconnection of Long Shock Waves

    Mat. Zametki, 110:6 (2021),  853–871
  10. Analytical solution for the cavitating flow over a wedge. II

    Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021),  1873–1893
  11. Analytical solution for the cavitating flow over a wedge. I

    Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020),  2098–2121
  12. Asymptotics of the Riemann–Hilbert problem for a magnetic reconnection model in plasma

    Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020),  1898–1914
  13. Singular behavior of harmonic maps near corners

    Complex Var. Elliptic Equ., 64:5 (2019),  838–851
  14. Hardy spaces, approximation issues and boundary value problems

    Eurasian Math. J., 9:3 (2018),  85–94
  15. On the Behavior of Harmonic Mappings in Angles

    Mat. Zametki, 101:3 (2017),  474–480
  16. On a New Representation for the Solution of the Riemann–Hilbert Problem

    Mat. Zametki, 99:6 (2016),  932–937
  17. Analytic-numerial method for computation of interaction of physical fields in semiconductor diode

    Mat. Model., 27:7 (2015),  15–24
  18. Solution of the inverse problem for the Grad–Shafranov equation for magnetic field computation in tokamak

    Mat. Model., 26:11 (2014),  57–64
  19. Singular Riemann–Hilbert problem in complex-shaped domains

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1904–1953
  20. Application of the multipole method to direct and inverse problems for the Grad–Shafranov equation with a nonlocal condition

    Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014),  619–685
  21. On a problem of the constructive theory of harmonic mappings

    CMFD, 46 (2012),  5–30
  22. Effective method for solving singularly perturbed systems of nonlinear differential equations

    CMFD, 15 (2006),  45–58
  23. A method for solving a singularly perturbed system of nonlinear differential equations

    Dokl. Akad. Nauk, 394:6 (2004),  731–734
  24. A boundary value problem for modeling physical fields in a semiconductor

    Zh. Vychisl. Mat. Mat. Fiz., 44:12 (2004),  2220–2251
  25. The asymptotic of the solution to the Dirichlet problem for Poisson's equation in domains with a narrow slit

    Zh. Vychisl. Mat. Mat. Fiz., 43:12 (2003),  1786–1805
  26. The Riemann–Hilbert problem in a complicated domain for a model of magnetic reconnection in a plasma

    Zh. Vychisl. Mat. Mat. Fiz., 42:3 (2002),  277–312
  27. Multipole method for the Dirichlet problem on doubly connected domains of complex geometry: A general description of the method

    Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1633–1647
  28. Application of the multipole method in the calculation of an electric field in a laser of special design

    Zh. Vychisl. Mat. Mat. Fiz., 37:10 (1997),  1221–1236
  29. An analytic-numerical method for solving the Poisson equation in complex domains

    Dokl. Akad. Nauk, 344:3 (1995),  301–304
  30. A method for solving a conjugation problem for harmonic functions

    Dokl. Akad. Nauk, 344:2 (1995),  151–154
  31. The multipole method for Poisson's equation in regions with rounded corners

    Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995),  867–892
  32. On the development of the Trefftz method

    Dokl. Akad. Nauk, 337:6 (1994),  713–717
  33. Modelling of cosmic bodies fracture during their flight in planet atmosperes

    Mat. Model., 6:8 (1994),  61–75
  34. A method for solving the Dirichlet problem for domains with a narrow slit

    Dokl. Akad. Nauk, 330:2 (1993),  140–143
  35. Weighted Hardy-type spaces

    Dokl. Akad. Nauk, 328:3 (1993),  281–284
  36. Solution of the Dirichlet problem for the Poisson equation in a domain bounded by a polygon with a rounded corner

    Dokl. Akad. Nauk SSSR, 306:6 (1989),  1294–1297
  37. Hardy-type spaces of harmonic functions

    Dokl. Akad. Nauk SSSR, 299:2 (1988),  272–276
  38. Properties of domains bounded by circular triangles

    Dokl. Akad. Nauk SSSR, 286:2 (1986),  265–268
  39. On the problem of inversion for an equation of the Fuchs class

    Differ. Uravn., 22:11 (1986),  1854–1865
  40. The Dirichlet problem for the Poisson equation in an angular domain

    Differ. Uravn., 21:12 (1985),  2105–2114
  41. The variation of a mapping function in the deformation of the domain

    Dokl. Akad. Nauk SSSR, 275:6 (1984),  1299–1302
  42. Asymptotic behavior of the solutions of some boundary value problems for the Laplace equation in the case of deformation of the domain

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 20 (1982),  3–36
  43. On the solution of the Dirichlet problem by expansion in a Fourier series

    Dokl. Akad. Nauk SSSR, 249:1 (1979),  19–22
  44. A method for the solution of certain plane mixed problems for the Laplace equation

    Dokl. Akad. Nauk SSSR, 237:5 (1977),  1012–1015
  45. A variant of the monte carlo method for the solution of linear problems of the dynamics of a rarefied gas

    Zh. Vychisl. Mat. Mat. Fiz., 13:4 (1973),  1075–1079
  46. Refinement of the method of statistical tests (Monte-Carlo) for the computation of rarefied gas flows

    Dokl. Akad. Nauk SSSR, 167:5 (1966),  1016–1018

  47. Volkîv Å. A. Block method for solving the Laplace equation and for constructing conformal mappings. Boca Raton (U.S.A.) etc. CRC Press, Inc., 1994. 227 p. ISBN 0-8493-9406-6. (Book review)

    Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995),  479
  48. Correction to: “Weighted Hardy-type spaces”

    Dokl. Akad. Nauk, 330:6 (1993),  816


© Steklov Math. Inst. of RAS, 2026