RUS  ENG
Full version
PEOPLE

Èshkabilov Yusup Khalbaevich

Publications in Math-Net.Ru

  1. Properties of stochastic operators of order $\nu$ on a finite-dimensional simplex

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 166:4 (2024),  651–659
  2. Positive fixed points of Hammerstein integral operators with degenerate kernel

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 166:3 (2024),  437–449
  3. On discrete spectrum of one two-particle lattice Hamiltonian

    Ufimsk. Mat. Zh., 14:2 (2022),  101–111
  4. Spectral properties of self-adjoint partially integral operators with non-degenerate kernels

    Vladikavkaz. Mat. Zh., 24:4 (2022),  91–104
  5. Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$

    Vladikavkaz. Mat. Zh., 23:3 (2021),  80–90
  6. About the spectral properties of one three-partial model operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5,  3–10
  7. Phase transitions for models with a continuum set of spin values on a Bethe lattice

    TMF, 205:1 (2020),  146–155
  8. Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures

    J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  663–673
  9. Lyapunov operator $\mathcal{L}$ with degenerate kernel and Gibbs measures

    Nanosystems: Physics, Chemistry, Mathematics, 8:5 (2017),  553–558
  10. Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree

    Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016),  893–899
  11. Spectrum of a model three-particle Schrödinger operator

    TMF, 186:2 (2016),  311–322
  12. On positive solutions of the homogeneous Hammerstein integral equation

    Nanosystems: Physics, Chemistry, Mathematics, 6:5 (2015),  618–627
  13. On the essential and the discrete spectra of a Fredholm type partial integral operator

    Mat. Tr., 17:2 (2014),  23–40
  14. On the number of negative eigenvalues of a partial integral operator

    Mat. Tr., 17:1 (2014),  128–144
  15. Efimov's effect for partial integral operators of fredholm type

    Nanosystems: Physics, Chemistry, Mathematics, 4:4 (2013),  529–537
  16. On the discrete spectrum of partial integral operators

    Mat. Tr., 15:2 (2012),  194–203
  17. On infinite number of negative eigenvalues of the Friedrichs model

    Nanosystems: Physics, Chemistry, Mathematics, 3:6 (2012),  16–24
  18. Essential and discrete spectra of the three-particle Schrödinger operator on a lattice

    TMF, 170:3 (2012),  409–422
  19. On infinity of the discrete spectrum of operators in the Friedrichs model

    Mat. Tr., 14:1 (2011),  195–211
  20. The Efimov effect for a model “three-particle” discrete Schrödinger operator

    TMF, 164:1 (2010),  78–87
  21. Essential and discrete spectra of partially integral operators

    Mat. Tr., 11:2 (2008),  187–203
  22. Partially integral operators with bounded kernels

    Mat. Tr., 11:1 (2008),  192–207
  23. A discrete "three-particle" Schrödinger operator in the Hubbard model

    TMF, 149:2 (2006),  228–243
  24. On the spectral properties of operators in the Friedrichs model with a noncompact kernel in the space of functions of two variables

    Vladikavkaz. Mat. Zh., 8:3 (2006),  53–67


© Steklov Math. Inst. of RAS, 2026