RUS  ENG
Full version
PEOPLE

Vakulov Boris Grigir'evich

Publications in Math-Net.Ru

  1. On the weighted generalized Hölder continuity of a hypersingular integral over a metric measure space

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1347–1369
  2. Riesz Potential with Integrable Density in Hölder-Variable Spaces

    Mat. Zametki, 108:5 (2020),  669–678
  3. Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable Hölder spaces

    Sib. Èlektron. Mat. Izv., 14 (2017),  647–656
  4. Zygmund-type estimates for fractional integration and differentiation operators of variable order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6,  25–34
  5. Fractional integrals and differentials of variable order in Hölder spaces $H^{\omega(t,x)}$

    Vladikavkaz. Mat. Zh., 12:4 (2010),  3–11
  6. Spherical convolution operators in spaces of variable Hölder order

    Mat. Zametki, 80:5 (2006),  683–695
  7. Spherical operators of potential type in weighted Hölder spaces of variable order

    Vladikavkaz. Mat. Zh., 7:2 (2005),  26–40
  8. Spherical convolution operators with a power-logarithmic kernel in generalized Hölder spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 2,  3–14
  9. Equivalent normings in spaces of functions of fractional smoothness on the sphere, of type $C^\lambda(S_{n-1})$, $H^\lambda(S_{n-1})$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12,  68–71
  10. An operator of potential type on a sphere in generalized Hölder classes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 11,  66–69

  11. Salaudin Musaevich Umarkhadzhiev (on the occasion of his 70th birthday)

    Vladikavkaz. Mat. Zh., 25:1 (2023),  141–142
  12. Stefan Grigorievich Samko (on the occasion of his 80th birthday)

    Vladikavkaz. Mat. Zh., 23:3 (2021),  126–129
  13. Stefan Grigog'evich Samko (on his seventieth birthday)

    Vladikavkaz. Mat. Zh., 13:2 (2011),  67–68
  14. Sergeĭ Mikhaĭlovich Nikol'skiĭ (on the occasion of his hundredth birthday)

    Vladikavkaz. Mat. Zh., 7:2 (2005),  5–10


© Steklov Math. Inst. of RAS, 2026