RUS  ENG
Full version
PEOPLE

Golovkin Kirill Kapitonovich

Publications in Math-Net.Ru

  1. Uniform equivalence of parametric norms in ergodic and approximation theories

    Izv. Akad. Nauk SSSR Ser. Mat., 35:4 (1971),  900–921
  2. The approximate computation of Fourier integrals

    Trudy Mat. Inst. Steklov., 116 (1971),  7–17
  3. Parametric-normed spaces and normed massives

    Trudy Mat. Inst. Steklov., 106 (1969),  3–137
  4. The example of non-uniqueness of bounded classical solutions of Navier–Stokes equations whose difference vanishes at the infinity

    Zap. Nauchn. Sem. LOMI, 14 (1969),  8–23
  5. On some estimates of convolutions

    Zap. Nauchn. Sem. LOMI, 7 (1968),  6–86
  6. The principle of locality in the theory of boundary-value problems for partial differential equations. I

    Izv. Akad. Nauk SSSR Ser. Mat., 31:5 (1967),  1027–1056
  7. New model equations of motion of a viscous fluid and their unique solvability

    Trudy Mat. Inst. Steklov., 102 (1967),  29–50
  8. A generalization of Marcinkiewicz's interpolation theorem

    Trudy Mat. Inst. Steklov., 102 (1967),  5–28
  9. Approximation of functions of the class $W_p^l(\Omega)$

    Trudy Mat. Inst. Steklov., 92 (1966),  50–56
  10. Vanishing viscosity in Cauchy's problem for hydromechanics equations

    Trudy Mat. Inst. Steklov., 92 (1966),  31–49
  11. Estimates of integral operators in translation-invariant norms. II

    Trudy Mat. Inst. Steklov., 92 (1966),  5–30
  12. Examples of the non-uniqueness and low stability of solutions of the equations of hydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 5:4 (1965),  667–679
  13. Some inequalities between norms of mixed derivatives of functions of several variables

    Dokl. Akad. Nauk SSSR, 159:5 (1964),  965–967
  14. The $\varepsilon$-entropy of certain compact sets of differentiable functions in spaces with monotone norm

    Dokl. Akad. Nauk SSSR, 158:2 (1964),  261–263
  15. Geometric smoothness characteristics of functions of two variables

    Trudy Mat. Inst. Steklov., 73 (1964),  139–158
  16. A boundary-value problem for the Navier–Stokes equations

    Trudy Mat. Inst. Steklov., 73 (1964),  118–138
  17. Bounds for integral operators in translation-invariant norms

    Trudy Mat. Inst. Steklov., 70 (1964),  47–58
  18. Imbedding theorems for fractional spaces

    Trudy Mat. Inst. Steklov., 70 (1964),  38–46
  19. On the approximation of functions in arbitrary norms

    Trudy Mat. Inst. Steklov., 70 (1964),  26–37
  20. On the non-existence of certain inequalities between functional norms

    Trudy Mat. Inst. Steklov., 70 (1964),  5–25
  21. Nonuniqueness of the solutions of certain boundary problems for the equations of hydromechanics

    Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964),  773–775
  22. Imbedding theorems for fractional spaces

    Dokl. Akad. Nauk SSSR, 143:4 (1962),  767–770
  23. On equivalent normalizations of fractional spaces

    Trudy Mat. Inst. Steklov., 66 (1962),  364–383
  24. The first boundary-value problem for the non-stationary Navier–Stokes equations

    Dokl. Akad. Nauk SSSR, 140:2 (1961),  287–290
  25. Certain conditions for the smoothness of a function of several variables and estimates of convolution operators

    Dokl. Akad. Nauk SSSR, 139:3 (1961),  524–527
  26. Two classes of inequalities for sufficiently smooth functions of $n$ variables

    Dokl. Akad. Nauk SSSR, 138:1 (1961),  22–25
  27. Conditions for the smoothness of functions

    Dokl. Akad. Nauk SSSR, 134:6 (1960),  1283–1286
  28. On imbedding theorems

    Dokl. Akad. Nauk SSSR, 134:1 (1960),  19–22
  29. Solutions of non-stationary boundary value problems for Navier-Stokes equations

    Trudy Mat. Inst. Steklov., 59 (1960),  100–114
  30. Potential theory for the non-stationary linear Navier-Stokes equations in the case of three space variables

    Trudy Mat. Inst. Steklov., 59 (1960),  87–99
  31. The plane motion of a viscous incompressible fluid

    Trudy Mat. Inst. Steklov., 59 (1960),  37–86

  32. Errata

    Trudy Mat. Inst. Steklov., 70 (1964),  318


© Steklov Math. Inst. of RAS, 2026