RUS  ENG
Full version
PEOPLE

Volkov Vladimir Tarasovich

Publications in Math-Net.Ru

  1. Front formation in the reaction-diffusion problem with nonlinear diffusion

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 243 (2025),  56–62
  2. On contrast structures in a problem of the baretting effect theory

    TMF, 220:1 (2024),  154–163
  3. Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection

    TMF, 220:1 (2024),  44–58
  4. Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification

    TMF, 212:2 (2022),  179–189
  5. Asymptotic solution of the boundary control problem for a Burgers-type equation with modular advection and linear gain

    Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1851–1860
  6. Asymptotic solution of coefficient inverse problems for Burgers-type equations

    Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020),  975–984
  7. Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models

    Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019),  50–62
  8. Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation

    Model. Anal. Inform. Sist., 24:3 (2017),  322–338
  9. Moving front solution of the reaction-diffusion problem

    Model. Anal. Inform. Sist., 24:3 (2017),  259–279
  10. Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes

    Model. Anal. Inform. Sist., 23:3 (2016),  334–341
  11. Magnetic and screening properties of amorphous ferromagnetic ribbons

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:19 (2014),  42–50
  12. Front formation and dynamics in the reaction-diffusion-advection model

    Mat. Model., 22:8 (2010),  109–118
  13. Simulation of in-situ combustion front dynamics

    Num. Meth. Prog., 11:4 (2010),  306–312
  14. On the formation of sharp transition layers in two-dimensional reaction-diffusion models

    Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007),  1356–1364
  15. Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations

    Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006),  615–623
  16. Periodic solutions with boundary layers of a singularly perturbed reaction–diffusion model

    Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994),  1307–1315
  17. Asymptotic approximation of a periodic solution of the second boundary-value problem for systems with small diffusion

    Mat. Zametki, 49:5 (1991),  32–36
  18. The asymptotic of periodic solutions of some systems with small diffusion

    Mat. Model., 1:4 (1989),  150–154
  19. Numerical-asymptotic analysis of transient processes in semiconductors

    Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989),  1159–1167
  20. Periodic solutions of a singularly perturbed equation of parabolic type

    Dokl. Akad. Nauk SSSR, 285:1 (1985),  15–19
  21. Periodic solutions of singularly perturbed equations of parabolic type

    Differ. Uravn., 21:10 (1985),  1755–1760
  22. Periodic solutions of some singularly-perturbed equations of parabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985),  609–614


© Steklov Math. Inst. of RAS, 2026