|
|
Publications in Math-Net.Ru
-
On projective modules with a semilocal endomorphism ring
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 8, 23–29
-
On strongly regular modules and rings
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2, 60–63
-
Finite generation of projective modules over some rings
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 10, 63–75
-
Finite generability of projective modules over rings with polynomial identities
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 8, 65–75
-
A criterion for the projectivity of finitely generated flat modules
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10, 68–75
-
Lifting the finite generation of a projective module modulo its radical
Mat. Zametki, 49:3 (1991), 97–108
-
Projectivity of finitely generated flat modules over semilocal rings
Mat. Zametki, 37:2 (1985), 152–162
-
A counterexample to two conjectures on projective and flat modules
Sibirsk. Mat. Zh., 25:6 (1984), 31–35
-
Finite generation of projective modules
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 9, 69–79
-
The projectivity of finitely generated flat modules
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 1, 85–93
-
Projectivity of finitely generated plane modules over a semilocal ring with a single primitive ideal
Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 6, 106
-
Rings over which any finitely generated flat module is projective
Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 9, 65–73
-
Exactness of functors
Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 4, 104–108
-
The weak dimension of modules, rings and algebras. The projectivity of flat modules
Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2, 152–157
-
The projectivity of finitely generated flat modules
Sibirsk. Mat. Zh., 6:3 (1965), 564–573
-
Vladimir Vladimirovich Morozov (1910–1975)
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10, 3–4
-
Vladimir Vladimirovich Morozov (obituary)
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 2, 140–141
© , 2026