RUS  ENG
Full version
PEOPLE

Gorodestkii Vasilii Vasil'evich

Publications in Math-Net.Ru

  1. Gel'fond–Leont'ev generalized differentiation operators in spaces of type $S$

    Sibirsk. Mat. Zh., 54:3 (2013),  569–584
  2. The Cauchy problem for evolution equations with the Bessel operator of infinite order. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 7,  31–42
  3. The Cauchy problem for evolution equations with the Bessel operator of infinite order. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6,  3–15
  4. On smooth solutions of a class of parabolic-type equations with unboundedly growing coefficients. II

    Differ. Uravn., 34:11 (1998),  1527–1535
  5. On smooth solutions of a class of parabolic-type equations with unboundedly growing coefficients. I

    Differ. Uravn., 34:10 (1998),  1349–1358
  6. On the solvability of the Cauchy problem for evolution equations of parabolic type with degeneration in some spaces

    Differ. Uravn., 28:8 (1992),  1373–1381
  7. Polynomial representation of solutions of operator-differential equations of hyperbolic type in a Hilbert space

    Differ. Uravn., 27:6 (1991),  941–947
  8. On the rate of localization of solutions of the Cauchy problem for equations of parabolic type with degeneration

    Differ. Uravn., 27:4 (1991),  697–699
  9. Representation of solutions of operator-differential equations of hyperbolic type in polynomial form

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 11,  87–89
  10. Polynomial approximation of solutions of evolutionary parabolic equations in a Hilbert space

    Mat. Zametki, 49:3 (1991),  23–27
  11. Localization of the solutions of the Cauchy problem for $\vec{2b}$-parabolic systems in classes of generalized functions

    Differ. Uravn., 24:2 (1988),  348–350
  12. The Cauchy problem for equations that are parabolic in the sense of Shilov in classes of generalized periodic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 5,  82–84
  13. A method of summation of Gauss–Weierstrass type of multiple Fourier series in spaces of generalized functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 4,  28–34
  14. The periodic Cauchy problem for an equation of parabolic type in classes of generalized functions

    Differ. Uravn., 23:10 (1987),  1745–1751
  15. On the localization and stabilization of the solutions of the Cauchy problem for parabolic systems in classes of generalized functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 6,  37–46
  16. Localization principle for solutions of the Cauchy problem for parabolic systems in the class of generalized infinite-order functions

    Differ. Uravn., 21:6 (1985),  1077–1079
  17. Moment inequalities and the central limit theorem for integrals of random fields with mixing

    Zap. Nauchn. Sem. LOMI, 142 (1985),  39–47
  18. The central limit theorem and an invariance principle for weakly dependent random fields

    Dokl. Akad. Nauk SSSR, 276:3 (1984),  528–531
  19. On the rate of convergence in the invariance principle for strongly mixing sequences

    Teor. Veroyatnost. i Primenen., 28:4 (1983),  780–785
  20. The invariance principle for stationary random fields satisfying the strong mixing condition

    Teor. Veroyatnost. i Primenen., 27:2 (1982),  358–364
  21. Local limit theorems for linear generated random vectors

    Zap. Nauchn. Sem. LOMI, 119 (1982),  62–76
  22. The invariance principle for functions of stationary Gaussian variables

    Zap. Nauchn. Sem. LOMI, 97 (1980),  32–44
  23. On convergence to semi-stable Gaussian processes

    Teor. Veroyatnost. i Primenen., 22:3 (1977),  513–522
  24. On the strong mixing property for linear sequences

    Teor. Veroyatnost. i Primenen., 22:2 (1977),  421–423
  25. On the rate of convergence for the multidimensiona invariance principle

    Teor. Veroyatnost. i Primenen., 20:3 (1975),  642–649

  26. Letter to the editors

    Teor. Veroyatnost. i Primenen., 24:2 (1979),  444


© Steklov Math. Inst. of RAS, 2026