RUS  ENG
Full version
PEOPLE

Anulova Svetlana Vladimirovna

Publications in Math-Net.Ru

  1. Non-uniqueness of solutions of the Hamilton–Jacobi–Bellman equation for time-average control

    Avtomat. i Telemekh., 2017, no. 8,  91–99
  2. Quadratic Lyapunov function for stochastic mechanical systems with switching impacts

    Avtomat. i Telemekh., 2015, no. 10,  67–73
  3. A mirror descent algorithm for minimization of mean Poisson flow driven losses

    Avtomat. i Telemekh., 2014, no. 6,  30–38
  4. Maximizing the time until a controlled random walk in the quadrant hits the boundary

    Probl. Upr., 2010, no. 1,  7–11
  5. Approximation of initial loading of infinite-server systems

    Avtomat. i Telemekh., 2008, no. 7,  59–67
  6. Functional limit theorems for semimartingales in a polyhedron and their applications to queueing networks

    Dokl. Akad. Nauk SSSR, 314:3 (1990),  526–530
  7. Diffusion approximation for processes with normal reflection

    Teor. Veroyatnost. i Primenen., 35:3 (1990),  417–430
  8. Counterexamples: a stochastic differential equation with linearly increasing coefficients may have an explosive solution within a domain

    Teor. Veroyatnost. i Primenen., 35:2 (1990),  329–331
  9. Functional limit theorems for semimartingales in a convex domain

    Dokl. Akad. Nauk SSSR, 307:4 (1989),  777–781
  10. Stochastic calculus

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 45 (1989),  5–253
  11. Behavior of a control system in a sliding regime under small perturbations

    Avtomat. i Telemekh., 1986, no. 6,  25–29
  12. The effect of random perturbations on the functioning of a control system in the sliding mode

    Avtomat. i Telemekh., 1986, no. 4,  41–47
  13. An estimate of the probability that a degenerate diffusion process hits a set of positive measure

    Izv. Akad. Nauk SSSR Ser. Mat., 50:2 (1986),  211–241
  14. Diffusion processes: Discontinuous coefficients, degenerate diffusion, randomized drift

    Dokl. Akad. Nauk SSSR, 260:5 (1981),  1036–1040
  15. On stochastic differential equations with boundary conditions in a half-plane

    Izv. Akad. Nauk SSSR Ser. Mat., 45:3 (1981),  491–508
  16. Brownian motion Markovian stopping times with given laws

    Teor. Veroyatnost. i Primenen., 25:2 (1980),  366–369
  17. On the control of Brownian motion in a half-plane with an oblique reflection on the boundary

    Teor. Veroyatnost. i Primenen., 25:1 (1980),  44–58
  18. On processes with Lévy generating operator in a half-space

    Izv. Akad. Nauk SSSR Ser. Mat., 42:4 (1978),  708–750
  19. Non-uniqueness of solutions of the Hamilton-Jacobi-Bellman equation for time-average control

    Avtomat. i Telemekh.,  0


© Steklov Math. Inst. of RAS, 2026