RUS  ENG
Full version
PEOPLE

Khailov Evgenii Nikolaevich

Publications in Math-Net.Ru

  1. Bolza minimization problems for the Lotka–Volterra competition model

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  259–276
  2. Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  237–248
  3. Optimal combination treatment protocols for a controlled model of blood cancer

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  222–240
  4. Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka-Volterra predator-prey model

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:3 (2021),  43–58
  5. Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  79–98
  6. Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model

    Trudy Mat. Inst. Steklova, 315 (2021),  271–283
  7. Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  71–88
  8. On a Third-Order Singular Arc of Optimal Control in a Minimization Problem for a Mathematical Model of Psoriasis Treatment

    Trudy Mat. Inst. Steklova, 304 (2019),  298–308
  9. On the extensibility of solutions of nonautonomous quadratic differential systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  279–288
  10. Minimization problem of pollution in mathematical model of biological wastewater treatment

    Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012),  614–627
  11. Attainability Sets of a Homogeneous Bilinear System with Quasicommuting Matrices

    Differ. Uravn., 38:12 (2002),  1620–1626
  12. On the parametrization of a reachable set of a bilinear system with commuting matrices

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 90 (2002),  190–231
  13. On extremal controls for a homogeneous bilinear system that is controlled in the positive orthant

    Trudy Mat. Inst. Steklova, 220 (1998),  217–235
  14. On the switching times of extremal controls in a linear time-optimality problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  255–265
  15. Some estimations on extremal controls in the problem of optimal control for bilinear systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  202–210
  16. Parametrization of the controllability set of a linear control dynamical system

    Trudy Mat. Inst. Steklov., 211 (1995),  401–410
  17. Determination of the switching times of an extremal control in a nonlinear time-optimality problem

    Differ. Uravn., 28:11 (1992),  1988–1993
  18. Analytic parametrization of the set of controllability in a linear control problem

    Mat. Zametki, 44:3 (1988),  405–406

  19. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2008, no. 1,  45–53
  20. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2007, no. 1,  44–52
  21. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2006, no. 1,  44–52
  22. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2005, no. 1,  40–49


© Steklov Math. Inst. of RAS, 2026