RUS  ENG
Full version
PEOPLE

Grudsky Sergei Mikhailovich

Publications in Math-Net.Ru

  1. Eigenvalues of non-Hermitian banded Toeplitz matrices approaching simple points of the limiting set

    Zh. Vychisl. Mat. Mat. Fiz., 65:7 (2025),  1060–1076
  2. On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation

    Mat. Zametki, 104:3 (2018),  374–395
  3. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    Mat. Sb., 208:11 (2017),  4–28
  4. Dynamics of properties of Toeplitz operators on weighted Bergman spaces

    Sib. Èlektron. Mat. Izv., 3 (2006),  362–383
  5. Toeplitz operators with symbols that have discontinuities of infinite index type

    Dokl. Akad. Nauk, 342:3 (1995),  307–309
  6. Matrix singular integral operators with infinite index. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 6,  69–72
  7. Convolution equations on a finite interval with a small parameter multiplying the growing part of the symbol

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 7,  7–17
  8. Convolution equations on a finite interval with a small parameter in the growing part of the symbol

    Dokl. Akad. Nauk SSSR, 309:5 (1989),  1040–1043
  9. Factorization of $u$-periodic matrix-functions and problems with infinite index

    Dokl. Akad. Nauk SSSR, 295:6 (1987),  1298–1302
  10. Singular integral equations and the Riemann boundary value problem with infinite index in the space $L_p(\Gamma,\omega)$

    Izv. Akad. Nauk SSSR Ser. Mat., 49:1 (1985),  55–80
  11. On invertibility in $L_2(R)$ of singular integral operators with periodic coefficients and a shift

    Dokl. Akad. Nauk SSSR, 269:6 (1983),  1303–1306
  12. The Riemann boundary value problem with discontinuities of almost periodic type in its coefficient

    Dokl. Akad. Nauk SSSR, 237:1 (1977),  21–24


© Steklov Math. Inst. of RAS, 2026