|
|
Publications in Math-Net.Ru
-
On the representation of the Radon—Kipriyanov transform by the Riesz potential
CMFD, 71:2 (2025), 267–274
-
Kipriyanov–Katrakhov singular pseudodifferential operators
CMFD, 71:2 (2025), 253–266
-
On the energy integrals of a mixed problem for a B-hyperbolic equation
Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025), 59–65
-
Dual Radon—Kipriyanov transformation. Basic properties
CMFD, 70:4 (2024), 643–653
-
On the transformation dual to the Radon–Kipriyanov transformation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 232 (2024), 70–77
-
Green's formulas for the Kipriyanov $\Delta_B$-operator in the weighted linear form
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 231 (2024), 68–73
-
Fundamental solution of a singular Bessel differential operator with a negative parameter
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7, 52–65
-
Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
Mat. Zametki, 113:4 (2023), 517–528
-
Theorems on iterations of partial integrals in a space with mixed norm
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022), 97–103
-
Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022), 53–65
-
Partial integral operators of non-negative orders in weighted Lebesgue spaces
Chelyab. Fiz.-Mat. Zh., 6:3 (2021), 289–298
-
An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021), 80–88
-
An analog of the Paley–Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 193 (2021), 104–109
-
Boundedness of operators with partial integrals with the mixed norm. II
Chelyab. Fiz.-Mat. Zh., 5:3 (2020), 293–305
-
Boundedness of operators with partial integrals with the mixed norm. I
Chelyab. Fiz.-Mat. Zh., 5:1 (2020), 22–31
-
Support theorem for the Radon–Kipriyanov $K_\gamma$-transform
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019), 118–124
-
Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schlömilch j-Polynomials
Mat. Zametki, 106:4 (2019), 549–564
-
The Radon–Kipriyanov Transform of the Generalized Spherical Mean of a Function
Mat. Zametki, 100:1 (2016), 118–132
-
The construction of Dirichlet and de la Vallée–Poussin–Nikol'skiĭ kernels for j-Bessel Fourier integrals
Tr. Mosk. Mat. Obs., 76:1 (2015), 67–84
-
Fundamental solutions of singular differential equations with a Bessel $D_B$ operator
Trudy Mat. Inst. Steklova, 278 (2012), 148–160
-
The Space of Weighted Bessel Potentials
Trudy Mat. Inst. Steklova, 250 (2005), 192–197
-
Kipriyanov–Radon Transform
Trudy Mat. Inst. Steklova, 248 (2005), 153–163
-
Solutions of the $B$-polyharmonic equation
Differ. Uravn., 36:10 (2000), 1365–1368
-
Multipliers of the mixed Fourier–Bessel transform
Dokl. Akad. Nauk, 354:4 (1997), 449–451
-
Multipliers of the mixed Fourier–Bessel transform
Trudy Mat. Inst. Steklova, 214 (1997), 234–249
-
On a symbol of an integral operator of $B$-potential type with a
single characteristic
Dokl. Akad. Nauk, 351:2 (1996), 164–168
-
$B$-hypersingular integrals with stabilizing characteristics
Dokl. Akad. Nauk, 350:6 (1996), 735–738
-
Description of the Riesz $B$-potential space $\mathbb{U}^\gamma_\alpha(L^\gamma_p)$ by means of $B$-derivatives of order
$2[\alpha/2]$
Dokl. Akad. Nauk, 341:2 (1995), 161–165
-
Spaces of Riesz $B$-potentials
Dokl. Akad. Nauk, 334:3 (1994), 278–280
-
Inversion of Riesz $B$-potentials
Dokl. Akad. Nauk SSSR, 321:3 (1991), 466–469
-
A class of hypersingular integrals
Dokl. Akad. Nauk SSSR, 315:2 (1990), 291–296
-
Weighted spherical functions and singular pseudodifferential operators
Differ. Uravn., 21:6 (1985), 1020–1032
-
On a class of spherical functions and singular pseudodifferential operators
Dokl. Akad. Nauk SSSR, 272:4 (1983), 781–784
-
Compactness and pseudocompactness of singular pseudodifferential operators
Differ. Uravn., 19:6 (1983), 1025–1032
-
On a class of pseudodifferential operators
Dokl. Akad. Nauk SSSR, 218:2 (1974), 278–280
-
Ivan Aleksandrovich Kipriyanov [1923–2001]
Differ. Uravn., 37:10 (2001), 1436
© , 2026