RUS  ENG
Full version
PEOPLE

Skripnik Vladimir Ivanovich

Publications in Math-Net.Ru

  1. On lattice oscillator-type Gibbs systems with superstable many-body potentials

    Theory Stoch. Process., 18(34):2 (2012),  96–101
  2. On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators

    Theory Stoch. Process., 15(31):1 (2009),  61–82
  3. Three Order Parameters in Quantum XZ Spin-Oscillator Models with Gibbsian Ground States

    SIGMA, 4 (2008), 007, 14 pp.
  4. Order Parameters in XXZ-Type Spin $\frac12$ Quantum Models with Gibbsian Ground States

    SIGMA, 2 (2006), 011, 6 pp.
  5. On quantum systems of particles with singular magnetic interaction in one dimension. $\mathrm{M}$$\mathrm{B}$ statistics

    Mat. Fiz. Anal. Geom., 4:1/2 (1997),  248–256
  6. Generalized solutions of the Bogolyubov diffusion hierarchy in the thermodynamic limit. Cluster expansions

    TMF, 93:1 (1992),  119–137
  7. Functional integral method for gibbs systems with many-body potentials. I

    TMF, 88:1 (1991),  115–121
  8. Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition

    TMF, 86:2 (1991),  257–261
  9. Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit

    TMF, 79:1 (1989),  127–134
  10. Mean field limit in a generalized Gibbs system and the equivalent nonequilibrium system of interacting Brownian particles

    TMF, 76:1 (1988),  100–117
  11. Smoluchowski diffusion in an infinite system at low density: Local time evolution

    TMF, 69:1 (1986),  128–141
  12. Generalized solutions of Gibbs type for the Bogolyubov–Strel'tsova diffusion hierarchy

    TMF, 58:3 (1984),  398–420
  13. Structure of translation operators in the phase spaces of free Euclidean fields. I

    TMF, 35:1 (1978),  24–28
  14. Construction of transfer matrix for continuous one-dimensional many-component Gibbs systems with regular two-body interaction potential

    TMF, 29:3 (1976),  323–335
  15. A certain variant of the matrix method in statistical mechanics

    Dokl. Akad. Nauk SSSR, 222:4 (1975),  797–799
  16. Kirkwood–Salzburg equations for the coefficient functions of the $S$ matrix

    TMF, 8:3 (1971),  369–380


© Steklov Math. Inst. of RAS, 2026