|
|
Publications in Math-Net.Ru
-
Two-sided semi-local smoothing splines
Tr. Semim. im. I. G. Petrovskogo, 31 (2016), 220–230
-
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 7:5 (2015), 977–988
-
Mathematical modeling of bending of a circular plate with the use of $S$-splines
Fundam. Prikl. Mat., 19:3 (2014), 171–185
-
Cubature and quadrature formulas of high order of approximation
Fundam. Prikl. Mat., 18:5 (2013), 187–207
-
Semilocal smoothing splines
Tr. Semim. im. I. G. Petrovskogo, 29 (2013), 443–454
-
Quadrature Formulas with High Order Approximation
Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013), 87–100
-
Semilocal smoothihg $S$-splines
Computer Research and Modeling, 2:4 (2010), 349–357
-
Semilocal smoothihg splines of seventh degree
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 6, 104–112
-
Solving of boundary tasks by using $S$-spline
Computer Research and Modeling, 1:2 (2009), 161–171
-
Twice continuously differentiable semilocal smoothing spline
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 5, 11–19
-
Semilocal smoothing spline of class $C^1$
Tr. Semim. im. I. G. Petrovskogo, 26 (2007), 348–368
-
Twice continuously differentiable $\mathrm{S}$-splines
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 2, 12–17
-
Asymptotic integration of a system of boundary-layer equations by the method of averaging
Dokl. Akad. Nauk SSSR, 213:1 (1973), 63–66
-
Construction of the solution of a nonstationary Prandtl system by the line method with respect to time
Uspekhi Mat. Nauk, 28:2(170) (1973), 243–244
-
Continuation of a $T$-periodic boundary layer
Uspekhi Mat. Nauk, 27:3(165) (1972), 215–216
© , 2026