RUS  ENG
Full version
PEOPLE

Efimov Aleksandr Vasil'evich

Publications in Math-Net.Ru

  1. Some Properties of Multiplicative Orthonormal Systems Applied in Digital Signal Processing

    Trudy Mat. Inst. Steklova, 219 (1997),  137–182
  2. A bound on Fourier coefficients according to the Chrestenson–Levy system in ag-locally integral metric

    Mat. Zametki, 48:4 (1990),  29–36
  3. On the application of multiplicative systems in numerical information processing

    Trudy Mat. Inst. Steklov., 180 (1987),  112–113
  4. The multiplicative Fourier integral and some of its applications

    Dokl. Akad. Nauk SSSR, 242:3 (1978),  517–520
  5. The approximation of conjugate functions by conjugate interpolating sums

    Mat. Zametki, 20:3 (1976),  425–432
  6. A continuous analog of periodic multiplicative orthonormal systems

    Dokl. Akad. Nauk SSSR, 218:2 (1974),  268–271
  7. $J$-expanding mtrix functions and their role in the analytical theory of electrical circuits

    Uspekhi Mat. Nauk, 28:1(169) (1973),  65–130
  8. A note on a theorem of Sunouchi

    Mat. Zametki, 12:6 (1972),  665–670
  9. On the rate of summability of orthogonal series

    Izv. Akad. Nauk SSSR Ser. Mat., 35:6 (1971),  1389–1408
  10. On upper bounds of Fourier–Walsh coefficients

    Mat. Zametki, 6:6 (1969),  725–736
  11. Some estimates of the rate of summability of orthogonal series by linear means

    Mat. Zametki, 4:3 (1968),  261–268
  12. Generalization of a theorem of Kaczmarz

    Mat. Zametki, 1:4 (1967),  399–404
  13. Summation of orthogonal series by linear methods

    Uspekhi Mat. Nauk, 22:2(134) (1967),  119–124
  14. Best approximations of classes of periodic functions by trigonometric polynomials

    Izv. Akad. Nauk SSSR Ser. Mat., 30:5 (1966),  1163–1178
  15. On certain approximation properties of periodic multiplicative orthonormal systems

    Mat. Sb. (N.S.), 69(111):3 (1966),  354–370
  16. On nonsummability of orthogonal series by linear methods

    Dokl. Akad. Nauk SSSR, 152:1 (1963),  31–34
  17. The de la Vallee Poussin summability of orthogonal series

    Izv. Akad. Nauk SSSR Ser. Mat., 27:4 (1963),  831–842
  18. Linear methods of approximating continuous periodic functions

    Mat. Sb. (N.S.), 54(96):1 (1961),  51–90
  19. Linear methods of approximating certain classes of continuous periodic functions

    Trudy Mat. Inst. Steklov., 62 (1961),  3–47
  20. On linear methods of summation of Fourier series of periodic functions

    Dokl. Akad. Nauk SSSR, 131:2 (1960),  234–237
  21. On linear summability methods for Fourier series

    Izv. Akad. Nauk SSSR Ser. Mat., 24:5 (1960),  743–756
  22. Approximation of periodic functions by de La Vallée Poussin sums. II

    Izv. Akad. Nauk SSSR Ser. Mat., 24:3 (1960),  431–468
  23. Approximation of continuous periodic functions by Fourier sums

    Izv. Akad. Nauk SSSR Ser. Mat., 24:2 (1960),  243–296
  24. Estimate of integral of modulus of polynomial on the unit circle

    Uspekhi Mat. Nauk, 15:4(94) (1960),  215–218
  25. Approximation of periodic functions by de La Vallée-Poussin sums

    Izv. Akad. Nauk SSSR Ser. Mat., 23:5 (1959),  737–770
  26. Approximation of functions with given modulus of continuity by Fourier sums

    Izv. Akad. Nauk SSSR Ser. Mat., 23:1 (1959),  115–134
  27. Approximation of conjugate functions by Fejér sums

    Uspekhi Mat. Nauk, 14:1(85) (1959),  183–188
  28. On approximation of certain classes of continuous functions by Fourier sums and by Féjer sums

    Izv. Akad. Nauk SSSR Ser. Mat., 22:1 (1958),  81–116
  29. Approximation of certain classes of continuous functions by Fourier sums and Fejer means

    Dokl. Akad. Nauk SSSR, 114:5 (1957),  930–933
  30. Estimation of the modulus of continuity of functions of class $\widetilde H^1_2$

    Izv. Akad. Nauk SSSR Ser. Mat., 21:2 (1957),  283–288
  31. On the Fourier coefficients of functions of class $\widetilde H^1_2$

    Uspekhi Mat. Nauk, 12:3(75) (1957),  303–311


© Steklov Math. Inst. of RAS, 2026