RUS  ENG
Full version
PEOPLE

Peretyat'kin Mikhail Georgievich

Publications in Math-Net.Ru

  1. The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  277–292
  2. Virtual algebraic isomorphisms between predicate calculi of finite rich signatures

    Algebra Logika, 60:6 (2021),  587–611
  3. The property of being a model complete theory is preserved by Cartesian extensions

    Sib. Èlektron. Mat. Izv., 17 (2020),  1540–1551
  4. The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one

    Sib. Èlektron. Mat. Izv., 17 (2020),  913–922
  5. First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories

    Mat. Tr., 18:2 (2015),  61–92
  6. Semantic universality of theories over a superlist

    Algebra Logika, 31:1 (1992),  47–73
  7. Analogues of Rice's theorem for semantic classes of propositions

    Algebra Logika, 30:5 (1991),  517–539
  8. Semantically universal classes of models

    Algebra Logika, 30:4 (1991),  414–431
  9. Uncountably categorical quasisuccession of Morley rank 3

    Algebra Logika, 30:1 (1991),  74–89
  10. The similarity of properties of recursively enumerable and finitely axiomatizable theories

    Dokl. Akad. Nauk SSSR, 308:4 (1989),  788–791
  11. Calculations on Turing machines in finitely axiomatizable theories

    Algebra Logika, 21:4 (1982),  410–441
  12. Finitely axiomatizable totally transcendental theories

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 2 (1982),  88–135
  13. Example of an $\omega _{1}$-categorical complete finitely axiomatizable theory

    Algebra Logika, 19:3 (1980),  314–347
  14. A theory with three countable models

    Algebra Logika, 19:2 (1980),  224–235
  15. A criterion of strong constructivizability of a homogeneous model

    Algebra Logika, 17:4 (1978),  436–454
  16. Complete theories with a finite number of countable models

    Algebra Logika, 12:5 (1973),  550–576
  17. A strongly constructive model without elementary submodels and extensions

    Algebra Logika, 12:3 (1973),  312–322
  18. Every recursively enumerable extension of a theory of linear order has a constructive model

    Algebra Logika, 12:2 (1973),  211–219
  19. Strongly constructive models and enumerations of the Boolean algebra of recursive sets

    Algebra Logika, 10:5 (1971),  535–557

  20. Asan Dabsovich Taimanov (obituary)

    Uspekhi Mat. Nauk, 45:5(275) (1990),  171–173


© Steklov Math. Inst. of RAS, 2026