|
|
Publications in Math-Net.Ru
-
Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces
Funktsional. Anal. i Prilozhen., 44:2 (2010), 57–73
-
Orthoscalar representations of quivers in the category of Hilbert spaces
Zap. Nauchn. Sem. POMI, 338 (2006), 180–201
-
Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets
Algebra i Analiz, 17:6 (2005), 161–183
-
Functors and Dyadic Sets of Finite Type
Funktsional. Anal. i Prilozhen., 34:2 (2000), 83–86
-
Finitely presentable triadic sets
Algebra i Analiz, 9:4 (1997), 3–27
-
Tame partially ordered sets with involution
Trudy Mat. Inst. Steklov., 183 (1990), 149–159
-
Partially ordered sets of finite growth
Funktsional. Anal. i Prilozhen., 16:2 (1982), 72–73
-
Polyquivers of finite type
Trudy Mat. Inst. Steklov., 148 (1978), 190–194
-
Polyquivers of infinite type
Trudy Mat. Inst. Steklov., 148 (1978), 175–189
-
The representations of poly-quiver of tame type
Zap. Nauchn. Sem. LOMI, 71 (1977), 181–206
-
Partially ordered sets of infinite type
Izv. Akad. Nauk SSSR Ser. Mat., 39:5 (1975), 963–991
-
Representations of partially ordered sets of infinite type
Funktsional. Anal. i Prilozhen., 8:4 (1974), 93–94
-
A problem of I. M. Gel'fand
Funktsional. Anal. i Prilozhen., 7:4 (1973), 54–69
-
Polyquivers and Dynkin schemes
Funktsional. Anal. i Prilozhen., 7:3 (1973), 94–95
-
Representations of quivers of infinite type
Izv. Akad. Nauk SSSR Ser. Mat., 37:4 (1973), 752–791
-
Application of the theory of modules over diades to the classification of finite $p$-groups with abelian subgroup of index $p$, and to the classification of the pairs of annihilating operators
Zap. Nauchn. Sem. LOMI, 28 (1972), 69–92
-
Representations of the partially ordered sets
Zap. Nauchn. Sem. LOMI, 28 (1972), 5–31
-
Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$.
Izv. Akad. Nauk SSSR Ser. Mat., 33:1 (1969), 65–89
-
A sharpening of a theorem of Bass
Dokl. Akad. Nauk SSSR, 176:2 (1967), 266–268
-
Representation of a tetrad
Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967), 1361–1378
-
Unimodular representations of the four group
Dokl. Akad. Nauk SSSR, 140:5 (1961), 1011–1014
© , 2026