RUS  ENG
Full version
PEOPLE

Nazarova Lyudmila Aleksandrovna

Publications in Math-Net.Ru

  1. Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces

    Funktsional. Anal. i Prilozhen., 44:2 (2010),  57–73
  2. Orthoscalar representations of quivers in the category of Hilbert spaces

    Zap. Nauchn. Sem. POMI, 338 (2006),  180–201
  3. Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets

    Algebra i Analiz, 17:6 (2005),  161–183
  4. Functors and Dyadic Sets of Finite Type

    Funktsional. Anal. i Prilozhen., 34:2 (2000),  83–86
  5. Finitely presentable triadic sets

    Algebra i Analiz, 9:4 (1997),  3–27
  6. Tame partially ordered sets with involution

    Trudy Mat. Inst. Steklov., 183 (1990),  149–159
  7. Partially ordered sets of finite growth

    Funktsional. Anal. i Prilozhen., 16:2 (1982),  72–73
  8. Polyquivers of finite type

    Trudy Mat. Inst. Steklov., 148 (1978),  190–194
  9. Polyquivers of infinite type

    Trudy Mat. Inst. Steklov., 148 (1978),  175–189
  10. The representations of poly-quiver of tame type

    Zap. Nauchn. Sem. LOMI, 71 (1977),  181–206
  11. Partially ordered sets of infinite type

    Izv. Akad. Nauk SSSR Ser. Mat., 39:5 (1975),  963–991
  12. Representations of partially ordered sets of infinite type

    Funktsional. Anal. i Prilozhen., 8:4 (1974),  93–94
  13. A problem of I. M. Gel'fand

    Funktsional. Anal. i Prilozhen., 7:4 (1973),  54–69
  14. Polyquivers and Dynkin schemes

    Funktsional. Anal. i Prilozhen., 7:3 (1973),  94–95
  15. Representations of quivers of infinite type

    Izv. Akad. Nauk SSSR Ser. Mat., 37:4 (1973),  752–791
  16. Application of the theory of modules over diades to the classification of finite $p$-groups with abelian subgroup of index $p$, and to the classification of the pairs of annihilating operators

    Zap. Nauchn. Sem. LOMI, 28 (1972),  69–92
  17. Representations of the partially ordered sets

    Zap. Nauchn. Sem. LOMI, 28 (1972),  5–31
  18. Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$.

    Izv. Akad. Nauk SSSR Ser. Mat., 33:1 (1969),  65–89
  19. A sharpening of a theorem of Bass

    Dokl. Akad. Nauk SSSR, 176:2 (1967),  266–268
  20. Representation of a tetrad

    Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967),  1361–1378
  21. Unimodular representations of the four group

    Dokl. Akad. Nauk SSSR, 140:5 (1961),  1011–1014


© Steklov Math. Inst. of RAS, 2026