RUS  ENG
Full version
PEOPLE

Orlov Igor Vladimirovich

Publications in Math-Net.Ru

  1. Neural networks - on awarding the Nobel Prize in Physics 2024

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 4,  34–48
  2. Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups

    Eurasian Math. J., 9:1 (2018),  69–82
  3. The Method of Lagrange Multipliers for the Class of Subsmooth Mappings

    Mat. Zametki, 103:2 (2018),  316–320
  4. Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone

    Mat. Zametki, 102:3 (2017),  396–404
  5. Inverse and Implicit Function Theorems in the Class of Subsmooth Maps

    Mat. Zametki, 99:4 (2016),  631–634
  6. Introduction to sublinear analysis – 2: symmetric case

    CMFD, 57 (2015),  108–161
  7. Invertibility of multivalued sublinear operators

    Eurasian Math. J., 6:4 (2015),  44–58
  8. Multidimensional variational functionals with subsmooth integrands

    Eurasian Math. J., 6:3 (2015),  54–75
  9. Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces

    Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015),  422–432
  10. Introduction to sublinear analysis

    CMFD, 53 (2014),  64–132
  11. Compact subdifferentials in Banach spaces and their applications to variational functionals

    CMFD, 49 (2013),  99–131
  12. Compact-analytical properties of variational functional in Sobolev spaces $W^{1,p}$

    Eurasian Math. J., 3:2 (2012),  94–119
  13. The limiting form of the Radon–Nikodym property is true for all Fréchet spaces

    CMFD, 37 (2010),  55–69
  14. Banach–Zaretsky theorem for compactly absolutely continuous mappings

    CMFD, 37 (2010),  38–54
  15. Inverse extremal problem for variational functionals

    Eurasian Math. J., 1:4 (2010),  95–115
  16. Compact subdifferentials: the formula of finite increments and related topics

    CMFD, 34 (2009),  121–138
  17. Hilbert compacts, compact ellipsoids, and compact extrema

    CMFD, 29 (2008),  165–175
  18. Principles of functional analysis in scales of spaces: Hahn–Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph

    Fundam. Prikl. Mat., 12:5 (2006),  153–173
  19. Normal Decompositions of Operator Spaces over Locally Convex Spaces

    Funktsional. Anal. i Prilozhen., 36:4 (2002),  78–80
  20. Finite increments formula for mappings into inductive scales of spaces

    Mat. Fiz. Anal. Geom., 8:4 (2001),  419–439
  21. Change of variables in a Lebesgue multiple integral and in an $A$-integral

    Dokl. Akad. Nauk SSSR, 210:1 (1973),  30–32
  22. Change of variables in a multiple Lebesgue integral

    Mat. Zametki, 14:1 (1973),  39–48
  23. Change of variable in the one-dimensional Lebesgue integral

    Mat. Zametki, 13:5 (1973),  747–758

  24. On the 75th anniversary of the birth of Vladimir Andreevich Lukyanenko

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 1,  7–12


© Steklov Math. Inst. of RAS, 2026