RUS  ENG
Full version
PEOPLE

Kats Izrail' Samoilovich

Publications in Math-Net.Ru

  1. Power Asymptotics of Spectral Functions of Boundary Value Problems for Generalized Second-Order Differential Equations with Boundary Conditions at a Singular Endpoint

    Funktsional. Anal. i Prilozhen., 49:1 (2015),  82–87
  2. Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals

    Mat. Zametki, 81:3 (2007),  341–347
  3. Pathological Birth-and-Death Processes and the Spectral Theory of Strings

    Funktsional. Anal. i Prilozhen., 39:2 (2005),  74–78
  4. Linear relations generated by the canonical differential equation of dimension 2, and eigenfunction expansions

    Algebra i Analiz, 14:3 (2002),  86–120
  5. The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems

    Funktsional. Anal. i Prilozhen., 33:3 (1999),  81–85
  6. Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems

    Zap. Nauchn. Sem. POMI, 262 (1999),  147–171
  7. The Stieltjes strong moment problem

    Algebra i Analiz, 8:6 (1996),  26–56
  8. Criterion for Discreteness of the Spectrum of a Singular Canonical System

    Funktsional. Anal. i Prilozhen., 29:3 (1995),  75–78
  9. Local properties of the classical singular function and the spectrum of a string

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 6,  17–21
  10. Thickness of the spectrum of a singular string

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 3,  23–30
  11. An unnoticed condition of nonoscillation and its corollaries

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 4,  46–51
  12. Integral estimates for the distribution of the spectrum of a string

    Sibirsk. Mat. Zh., 27:2 (1986),  62–74
  13. Linear relations generated by canonical differential equations

    Funktsional. Anal. i Prilozhen., 17:4 (1983),  86–87
  14. Theorems of the connection between the behavior of $R$-functions and the behavior of their spectral functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 11,  15–20
  15. Some general theorems on the density of the spectrum of the string

    Dokl. Akad. Nauk SSSR, 238:4 (1978),  785–788
  16. A description of the set of spectral functions of a regular string supporting a concentrated mass at an end that is free of boundary conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 7,  27–33
  17. Density of the spectrum of a string

    Dokl. Akad. Nauk SSSR, 211:3 (1973),  520–523
  18. Generalization of an asymptotic formula of V. A. Marchenko for spectral functions of a second-order boundary value problem

    Izv. Akad. Nauk SSSR Ser. Mat., 37:2 (1973),  422–436
  19. Power-asymptotic estimates for spectral functions of generalized boundary value problems of second order

    Dokl. Akad. Nauk SSSR, 203:4 (1972),  752–755
  20. Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end

    Izv. Akad. Nauk SSSR Ser. Mat., 35:1 (1971),  154–184
  21. Compatibility of the coefficients of a generalized second order linear differential equation

    Mat. Sb. (N.S.), 79(121):3(7) (1969),  368–380
  22. The convergence rate of the method of successive over relaxation

    Zh. Vychisl. Mat. Mat. Fiz., 9:5 (1969),  996–1003
  23. The growth of the spectral functions of generalized second order boundary value problems with the boundary condition at a regular end point

    Dokl. Akad. Nauk SSSR, 181:3 (1968),  534–537
  24. A remark on the article “The existence of spectral functions of generalized second order ifferential systems with boundary conditions at the singular end”

    Mat. Sb. (N.S.), 76(118):1 (1968),  147–152
  25. An application of the method of upper relaxation to the solution of three-dimensional problems for second order equations

    Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968),  115–124
  26. The solution of non-linear algebraic and transcendental equations in the complex plane

    Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  654–661
  27. Certain cases of uniqueness of the solution of the inverse problem for strings with a boundary condition at the singular end

    Dokl. Akad. Nauk SSSR, 164:5 (1965),  975–978
  28. The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end

    Mat. Sb. (N.S.), 68(110):2 (1965),  174–227
  29. Behaviour of spectral functions of differential systems with boundary conditions at a singular endpoint

    Dokl. Akad. Nauk SSSR, 157:1 (1964),  34–37
  30. Spectral multiplicity of a second-order differential operator and expansion in eigenfunction

    Izv. Akad. Nauk SSSR Ser. Mat., 27:5 (1963),  1081–1112
  31. Behaviour of solution of a linear second-order differential equation (apropos of a paper of E. Hille)

    Mat. Sb. (N.S.), 62(104):4 (1963),  476–495
  32. On the spectral multiplicity of a second-order differential operator

    Dokl. Akad. Nauk SSSR, 145:3 (1962),  510–513
  33. Two general theorems on the asymptotic behavior of spectral functions of second-order differential systems

    Izv. Akad. Nauk SSSR Ser. Mat., 26:1 (1962),  53–78
  34. On the genus of the spectrum of a singular string

    Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 1,  57–64
  35. Growth of spectral functions of differential systems of second order

    Izv. Akad. Nauk SSSR Ser. Mat., 23:2 (1959),  257–274
  36. Some general theorems on the behaviour of spectral functions of second order differential systems

    Dokl. Akad. Nauk SSSR, 122:6 (1958),  974–977
  37. Criteria for the discreteness of the spectrum of a singular string

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 2,  136–153
  38. On integral representations of analytic functions mapping the upper half-plane onto a part of itself

    Uspekhi Mat. Nauk, 11:3(69) (1956),  139–144
  39. On the structure of singular functions of bounded variation

    Uspekhi Mat. Nauk, 8:5(57) (1953),  157–159

  40. Correction to I. S. Kac's paper “Spectral multiplicity of a second-order differential operator and expansion in eigenfunctions”

    Izv. Akad. Nauk SSSR Ser. Mat., 28:4 (1964),  951–952


© Steklov Math. Inst. of RAS, 2026