RUS  ENG
Full version
PEOPLE

Dikii Leonid A

Publications in Math-Net.Ru

  1. Integrable nonlinear equations and the Liouville theorem

    Funktsional. Anal. i Prilozhen., 13:1 (1979),  8–20
  2. The calculus of jets and nonlinear Hamiltonian systems

    Funktsional. Anal. i Prilozhen., 12:2 (1978),  8–23
  3. The resolvent and Hamiltonian systems

    Funktsional. Anal. i Prilozhen., 11:2 (1977),  11–27
  4. Fractional powers of operators and Hamiltonian systems

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  13–29
  5. A Lie algebra structure in a formal variational calculation

    Funktsional. Anal. i Prilozhen., 10:1 (1976),  18–25
  6. Asymptotic behaviour of the resolvent of Sturm–Liouville equations and the algebra of the Korteweg–de Vries equations

    Uspekhi Mat. Nauk, 30:5(185) (1975),  67–100
  7. Hamiltonian systems connected with the rotation group

    Funktsional. Anal. i Prilozhen., 6:4 (1972),  83–84
  8. Double completeness of a system of characteristic functions arising in a problem of mathematical physics

    Funktsional. Anal. i Prilozhen., 1:3 (1967),  24–32
  9. The asymptotic behaviour of solutions to Laplace's tidal equation

    Dokl. Akad. Nauk SSSR, 170:1 (1966),  67–70
  10. Free oscillations frequencies of the terrestrial atmosphere

    Dokl. Akad. Nauk SSSR, 157:3 (1964),  580–582
  11. The influence function for small perturbations of an isothermally stratified baroclinic atmosphere

    Dokl. Akad. Nauk SSSR, 143:1 (1962),  97–100
  12. The stability of plane-parallel flows of an ideal fluid

    Dokl. Akad. Nauk SSSR, 135:5 (1960),  1068–1071
  13. On zeros of Whittaker and MacDonald functions with complex index

    Izv. Akad. Nauk SSSR Ser. Mat., 24:6 (1960),  943–954
  14. On boundary conditions depending on an eigenvalue

    Uspekhi Mat. Nauk, 15:1(91) (1960),  195–198
  15. Trace formulas for Sturm–Liouville differential operators

    Uspekhi Mat. Nauk, 13:3(81) (1958),  111–143
  16. A new method for an approximate computation of eigenvalues in the Sturm–Liouvilles's problem

    Dokl. Akad. Nauk SSSR, 116:1 (1957),  12–14
  17. The zeta function of an ordinary differential equation on a finite interval

    Izv. Akad. Nauk SSSR Ser. Mat., 19:4 (1955),  187–200
  18. On a formula of Gel'fand–Levitan

    Uspekhi Mat. Nauk, 8:2(54) (1953),  119–123


© Steklov Math. Inst. of RAS, 2026