RUS  ENG
Full version
PEOPLE

Korostelev Alexander P

Publications in Math-Net.Ru

  1. Recursive estimation of a vector parameter under Bahadur risk

    Teor. Veroyatnost. i Primenen., 45:4 (2000),  639–656
  2. Minimax Bahadur Efficiency for Small Confidence Levels

    Probl. Peredachi Inf., 32:4 (1996),  3–15
  3. Image Processing for Plane Domains: Change-Point Problems for the Domain's Area

    Probl. Peredachi Inf., 31:1 (1995),  33–55
  4. Asymptotic Efficiency in Estimation of a Convex Set

    Probl. Peredachi Inf., 30:4 (1994),  33–44
  5. Estimation of the Density Support and Its Functionals

    Probl. Peredachi Inf., 29:1 (1993),  3–18
  6. An asymptotically minimax regression estimator in the uniform norm up to exact constant

    Teor. Veroyatnost. i Primenen., 38:4 (1993),  875–882
  7. Action Functional for a Diffusion Process with Discontinuous Drift

    Teor. Veroyatnost. i Primenen., 37:3 (1992),  570–576
  8. Optimal Rates of Convergence of Estimates in the Stochastic Problem of Computerized Tomography

    Probl. Peredachi Inf., 27:1 (1991),  92–103
  9. Minimax reconstruction of planar images

    Teor. Veroyatnost. i Primenen., 36:1 (1991),  153–159
  10. On estimation accuracy for nonsmooth functionals of regression

    Teor. Veroyatnost. i Primenen., 35:4 (1990),  768–770
  11. Minimàõ filtering of the path of a dynamic system which depends on a non-parameteric signal

    Avtomat. i Telemekh., 1989, no. 8,  89–96
  12. Asymptotically Efficient Recursive Estimation of a Nonparametric Signal

    Probl. Peredachi Inf., 24:1 (1988),  33–42
  13. Recurrent Nonparametric Estimation Based on Observations of a Path of a Process with Independent Increments

    Teor. Veroyatnost. i Primenen., 33:3 (1988),  581–585
  14. On a Minimax Estimating of a Discontinuous Signal

    Teor. Veroyatnost. i Primenen., 32:4 (1987),  796–799
  15. Minimax Form of the Law of the Iterated Logarithm for Statistical Estimates

    Teor. Veroyatnost. i Primenen., 32:3 (1987),  494–502
  16. Asymptotically efficient estimation of functionals under parameter drift

    Dokl. Akad. Nauk SSSR, 288:6 (1986),  1327–1330
  17. Minimax properties of the maximum likelihood estimate when the parameter drifts

    Teor. Veroyatnost. i Primenen., 30:4 (1985),  679–693
  18. A note on upper functions for stochastic approximation

    Teor. Veroyatnost. i Primenen., 28:4 (1983),  769–775
  19. Conditions for the local convergence of recursive stochastic procedures

    Teor. Veroyatnost. i Primenen., 28:1 (1983),  135–142
  20. Bottlenecks of distributed systems in face of random disturbances. II

    Avtomat. i Telemekh., 1981, no. 11,  83–89
  21. Bottlenecks of distributed systems in face of random disturbances. I. Distributed disturbances

    Avtomat. i Telemekh., 1981, no. 10,  43–52
  22. On multi-step procedures of stochastic optimization

    Avtomat. i Telemekh., 1981, no. 5,  82–90
  23. A method for solution of one class of parabolic equations on a set of piecewise-uniform rods and its implementation on hybrid computers for control problems

    Avtomat. i Telemekh., 1980, no. 5,  180–187
  24. Damping perturbations of dynamic systems and convergence conditions for recursive stochastic procedures

    Teor. Veroyatnost. i Primenen., 24:2 (1979),  298–316
  25. A criterion for convergence of continuous stochastic approximation procedures

    Teor. Veroyatnost. i Primenen., 22:3 (1977),  595–602
  26. On a probabilistic representation of a discontinuous solution of a parabolic equation

    Teor. Veroyatnost. i Primenen., 22:2 (1977),  423–429
  27. Use of an analog-digital computer to simulate diffusion processes with normal reflection

    Avtomat. i Telemekh., 1975, no. 2,  126–135
  28. The convergence of processes that are obtained from Markov chains to diffusion processes with certain boundary conditions

    Uspekhi Mat. Nauk, 30:1(181) (1975),  239–240
  29. On the mesh method for the Poincaré boundary-value problem

    Dokl. Akad. Nauk SSSR, 219:4 (1974),  789–792
  30. A probabilistic representation of the solution of the directional derivative problem

    Teor. Veroyatnost. i Primenen., 18:1 (1973),  172–176


© Steklov Math. Inst. of RAS, 2026