RUS  ENG
Full version
PEOPLE

Meirmanov Anvarbek Mukatovich

Publications in Math-Net.Ru

  1. On the classical solution of the macroscopic model of in-situ leaching of rare metals

    Izv. RAN. Ser. Mat., 86:4 (2022),  116–161
  2. Two-scale expansion method in the problem of temperature oscillations in frozen soil

    Applied Mathematics & Physics, 54:1 (2022),  28–32
  3. A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations

    Chebyshevskii Sb., 21:4 (2020),  140–151
  4. On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem

    Mat. Zametki, 107:2 (2020),  229–240
  5. On homogenized equations of filtration in two domains with common boundary

    Izv. RAN. Ser. Mat., 83:2 (2019),  142–173
  6. The global-in-time existence of a classical solution for some free boundary problem

    Sibirsk. Mat. Zh., 60:2 (2019),  419–428
  7. Some free boundary problems arising in rock mechanics

    CMFD, 64:1 (2018),  98–130
  8. Homogenization of the equations of filtration of a viscous fluid in two porous media

    Sibirsk. Mat. Zh., 59:5 (2018),  1145–1158
  9. Homogenisation of the isothermal acoustics models in the configuration elastic body–porous-elastic medium

    Mat. Model., 28:12 (2016),  3–19
  10. Seismic in composite media: elastic and poroelastic components

    Sib. Èlektron. Mat. Izv., 13 (2016),  75–88
  11. The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium»

    Sib. Èlektron. Mat. Izv., 13 (2016),  49–74
  12. The deduction of the homogenized model of isothermal acoustics in a heterogeneous medium in the case of two different poroelastic domains

    Sib. Zh. Ind. Mat., 19:2 (2016),  37–46
  13. Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model

    Sib. Èlektron. Mat. Izv., 12 (2015),  884–900
  14. Mathematical models of a hydraulic shock in a slightly viscous liquid

    Mat. Model., 24:5 (2012),  112–130
  15. Equations of liquid filtration in double porosity media as a reiterated homogenization of Stokes equations

    Trudy Mat. Inst. Steklova, 278 (2012),  161–169
  16. Numerical homogenization in the Rayleigh–Taylor problem of filtering two immiscible incompressible liquids

    Mat. Model., 23:10 (2011),  33–43
  17. The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible viscous liquids in compressible crack-pore media. Part II: The macroscopic description

    Mat. Model., 23:4 (2011),  3–22
  18. The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part I: The microscopic description

    Mat. Model., 23:1 (2011),  100–114
  19. Acoustics equations in elastic porous media

    Sib. Zh. Ind. Mat., 13:2 (2010),  98–110
  20. Derivation of the equations of nonisothermal acoustics in elastic porous media

    Sibirsk. Mat. Zh., 51:1 (2010),  156–174
  21. Derivation of the equations of diffusion and convection of an admixture

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 18,  73–86
  22. Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures

    Tr. Semim. im. I. G. Petrovskogo, 27 (2009),  176–234
  23. Equations of nonisothermal filtration in fast processes in elastic porous media

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  113–129
  24. Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity

    Mat. Sb., 199:3 (2008),  45–68
  25. Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lamé Equations

    Trudy Mat. Inst. Steklova, 261 (2008),  210–219
  26. Darcy's law in anisothermic porous medium

    Sib. Èlektron. Mat. Izv., 4 (2007),  141–154
  27. Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media

    Sibirsk. Mat. Zh., 48:3 (2007),  645–667
  28. A generalized solution of the Stefan problem with kinetic supercooling

    Sib. Zh. Ind. Mat., 3:1 (2000),  66–86
  29. On the correctness of the phenomenological model of equilibrium phase transitions in a deformable elastic medium

    Dokl. Akad. Nauk SSSR, 313:4 (1990),  843–845
  30. Modeling crystallization of a binary alloy

    Prikl. Mekh. Tekh. Fiz., 30:4 (1989),  39–45
  31. Phenomenological model of first-order phase transitions in a deformable elastic medium

    Prikl. Mekh. Tekh. Fiz., 28:6 (1987),  43–50
  32. The Stefan problem with one space variable

    Dokl. Akad. Nauk SSSR, 285:4 (1985),  861–865
  33. The structure of the generalized solution of the quasistationary one-dimensional Stefan problem

    Differ. Uravn., 20:5 (1984),  882–885
  34. Structure of the generalized solution of the Stefan problem. Periodic solutions

    Dokl. Akad. Nauk SSSR, 272:4 (1983),  789–791
  35. A problem on the advance of a contact discontinuity surface in the filtration of an immiscible compressible fluid (Verigin's problem)

    Sibirsk. Mat. Zh., 23:1 (1982),  85–102
  36. An example of the nonexistence of a classical solution to the Stefan problem

    Dokl. Akad. Nauk SSSR, 258:3 (1981),  547–549
  37. On a problem with free boundary for parabolic equations

    Mat. Sb. (N.S.), 115(157):4(8) (1981),  532–543
  38. Solvability of Verigin's problem in an exact formulation

    Dokl. Akad. Nauk SSSR, 253:3 (1980),  588–591
  39. On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations

    Mat. Sb. (N.S.), 112(154):2(6) (1980),  170–192
  40. On classical solvability of the multidimensional Stefan problem

    Dokl. Akad. Nauk SSSR, 249:6 (1979),  1309–1312
  41. Questions of correctness of a model of the simultaneous motion of surface and ground waters

    Dokl. Akad. Nauk SSSR, 242:3 (1978),  505–508


© Steklov Math. Inst. of RAS, 2026